Skip to main content
Log in

Probabilistic and controlled teleportation of an arbitrary single-qubit state via 1D four-qubit cluster-type state and positive operator-valued measure

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A tripartite scheme for probabilistically teleporting an arbitrary single-qubit state with 1D four-qubit cluster-type state as the quantum channel has been proposed. In the scheme, the sender and the controller both perform a Bell-state measurement on their respective qubit pair in their hands and announce the measurement results via classical communication. With the help of the sender and the controller, the receiver can reconstruct the original state with a certain probability by introducing an auxiliary qubit and making appropriate unitary operations and positive operator-valued measures. Moreover, the total success probability and classical communication cost of the present scheme are also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C H Bennett, G Brassard, C Crepeau, R Jozsa, A Peres and W K Wootters Phys. Rev. Lett. 70 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. D Bouwmeester, J W Pan, K Mattle, M Eibl, H Weinfurter and A Zeilinger Nature 39 575 (1997)

    Article  ADS  Google Scholar 

  3. A Furusawa, J L Sϕnsen, S L Braunstein, C A Fuchs, H J Kimble and E S Polzik Science 282 706 (1998)

    Article  ADS  Google Scholar 

  4. M A Nielsen, E Knill and R Laflamme Nature 396 52 (1998)

    Article  ADS  Google Scholar 

  5. M Riebe et al. Nature 429 734 (2004)

    Article  ADS  Google Scholar 

  6. M D Barrett et al. Nature 429 737 (2004)

    Article  ADS  Google Scholar 

  7. W L Li, C F Li and G C Guo Phys. Rev. A 61 034301 (2000)

    Article  ADS  Google Scholar 

  8. H Prakash Indian J. Phys. 84 1005 (2010)

    Article  Google Scholar 

  9. Y Yeo and W K Chua Phys. Rev. Lett. 96 060502 (2006)

    Article  ADS  Google Scholar 

  10. L F Han and H Yuan Int. J. Quant. Infor. 6 1093 (2008)

    Article  MATH  Google Scholar 

  11. H Yuan, Y M Liu and Z J Zhang Phys. Lett. A 372 5938 (2008)

    Article  ADS  MATH  Google Scholar 

  12. A Karlsson and M Bourennane Phys. Rev. A 58 4394 (1998)

    Article  MathSciNet  Google Scholar 

  13. C P Yang, S I Chu and S Y Han Phys. Rev. A 70 022329 (2004)

    Article  ADS  Google Scholar 

  14. A SaiToh, R Rahimi and M Nakahara Phys. Rev. A 79 062313 (2009)

  15. F L Yan and D Wang Phys. Lett. A 316 297 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. T Gao, F L Yan and Y C Li Eur. Phys. Lett. 84 50001 (2008)

    Article  ADS  Google Scholar 

  17. H Y Dai, P X Chen and C Z Li J. Opt. B 6 106 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  18. H Y Dai, P X Chen and C Z Li Opt. Commun. 231 281 (2004)

    Article  ADS  Google Scholar 

  19. Z X Man, Y J Xia and N B An J. Phys. B 40 1767 (2007)

    Article  ADS  Google Scholar 

  20. Z X Man, Y J Xia and N B An Phys. Rev. A 75 052306 (2007)

    Article  ADS  Google Scholar 

  21. F G Deng, C Y Li, Y S Li and H Y Zhou Phys. Rev. A 72 022338 (2005)

    Article  ADS  Google Scholar 

  22. P Zhou, X H Li, F G Deng and H Y Zhou J. Phys. A 40 13121 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. X H Li, F G Deng and H Y Zhou Chin. Phys. Lett. 24 1151 (2007)

    Article  ADS  Google Scholar 

  24. J Dong and J F Teng Eur. Phys. J. D 49 129 (2008)

    Article  ADS  Google Scholar 

  25. S Muralidharan and P K Panigrahi Phys. Rev. A 78 062333 (2008)

    Article  ADS  Google Scholar 

  26. H J Briegel and R Raussendorf Phys. Rev. Lett. 86 910 (2001)

    Article  ADS  Google Scholar 

  27. S Bandyopadhyay Phys. Rev. A 62 012308 (2000)

    Article  ADS  Google Scholar 

  28. W Son, J Lee, M S Kim and Y J Park Phys. Rev. A 64 064304 (2001)

    Article  ADS  Google Scholar 

  29. F L Yan and H W Ding Chin. Phys. Lett. 23 17 (2006)

    Article  ADS  Google Scholar 

  30. J M Liu, X L Feng and C H Oh J. Phys. B 42 055508 (2009)

    Article  ADS  Google Scholar 

  31. J Wu Int. J. Theor. Phys. 49 324 (2010)

    Article  MATH  Google Scholar 

  32. Z Y Wang Int. J. Theor. Phys. 1357 49 (2010)

    Google Scholar 

  33. J F Song and Z Y Wang Int. J. Theor. Phys. 50 2410 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. P Zhou J. Phys. A: Math. Theor. 45 215305 (2012)

    Google Scholar 

  35. A Chakrabarti and A Chakraborti Indian J. Phys. 86 791 (2012)

    Article  ADS  Google Scholar 

  36. S Zhang, Q Jie and Q Wang Indian J. Phys. 86 387 (2012)

    Article  ADS  Google Scholar 

  37. K R Dastidar Indian J. Phys. 84 947 (2010)

    Article  ADS  Google Scholar 

  38. Q-L Wang, H-F Ren, R-M Lian and S-X Hou Indian J. Phys. 85 471 (2012)

Download references

Acknowledgments

This work is partly supported by the Higher Education Natural Science Foundation of Anhui Province under Grant No. KJ2010B383, the foundation for academic youth of Anhui Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, L.F., Yuan, H. Probabilistic and controlled teleportation of an arbitrary single-qubit state via 1D four-qubit cluster-type state and positive operator-valued measure. Indian J Phys 87, 777–780 (2013). https://doi.org/10.1007/s12648-013-0303-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-013-0303-7

Keywords

PACS Nos.

Navigation