Skip to main content
Log in

Revival and decay of entanglement in a two-qubit system coupled to a kicked top

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We investigate the entanglement dynamics of a two-qubit system coupling to a spin environment, described by a quantum kicked top (KT). The entanglement of the two-qubit system is sensitive to the classical orbit of the KT and displays rich dynamic behaviors. It quickly vanishes for chaotic orbit, but has significant revivals after the death when the KT is classically regular. As the tori of the KT shrink, the concurrence decay of the system is weakened and the concurrence revival of the system is strengthened. Such phenomena are analyzed in the literature of the interaction picture and the dynamics of wavepacket. It is found that the decay and revival of the concurrence of the system is closely related to the periodic motion of the wavepacket.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C H Bennett, G Brassard, C Crepeau, R Jozsa, A Peres and W K Wootters Phys. Rev. Lett. 70 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. H Prakash Indian J. Phys. 84 1021 (2010)

    Article  ADS  Google Scholar 

  3. T Yu and J H Eberly Science 323 598 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. J Dodd and J J Halliwell Phys. Rev. A 69 052105 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  5. T Yu and J H Eberly Phys. Rev. Lett. 93 140404 (2004)

    Article  ADS  Google Scholar 

  6. T Yu and J H Eberly Phys. Rev. Lett. 97 140403 (2006)

    Article  Google Scholar 

  7. J Laurat et al. Phys. Rev. Lett. 99 180504 (2007)

    Article  ADS  Google Scholar 

  8. M P Almeida, F de Melo, M Hor-Meyll, A Salles, S P Walborn, P H Souto Ribeiro and L Davidovich Science 316 579 (2007)

    Article  ADS  Google Scholar 

  9. R Tanás and Z Ficek J. Opt. B: Quantum Semiclass. Opt. 6 S610 (2004)

    Article  ADS  Google Scholar 

  10. Z Ficek and R Tanás Phys. Rev. A 74 024304 (2006)

    Article  ADS  Google Scholar 

  11. Z Ficek and R Tanás Phys. Rev. A 77 054301 (2008)

    Article  ADS  Google Scholar 

  12. D D Bhaktavatsala Rao, V Ravishankar and V Subrahmanyam Phys. Rev. A 75 052338 (2007)

    Article  ADS  Google Scholar 

  13. N Nayak, B Ghosh and A S Majumdar Indian J. Phys. 84 1039 (2010)

    Article  ADS  Google Scholar 

  14. C E López, G Romero, F Lastra, E Solano and J C Retamal Phys. Rev. Lett. 101 080503 (2008)

    Article  Google Scholar 

  15. S Chan, M D Reid and Z Ficek e-print arXiv:quant-ph/0810.3050 (2008)

  16. S Hill and W K Wootters Phys. Rev. Lett. 78 5022 (1997)

    Article  ADS  Google Scholar 

  17. W K Wootters Phys. Rev. Lett. 80 2245 (1998)

    Article  ADS  Google Scholar 

  18. A Peres Phys. Rev. Lett. 77 1413 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. F Benatti, R F Floreanini and M Piani Phys. Rev. Lett 91 70402 (2003)

    Article  ADS  Google Scholar 

  20. J N Bandyopadhyay and A Lakshminarayan Phys. Rev. E 69 016201 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  21. J N Bandyopadhyay e-print arXiv: 0806.4517v2 (2008)

  22. A Tanaka, H Fujisaki and T Miyadera Phys. Rev. E 66 045201(R) (2002)

    Article  ADS  Google Scholar 

  23. H Fujisaki, T Miyadera and A Tanaka Phys. Rev. E 67 066201 (2003)

    MathSciNet  Google Scholar 

  24. G Stamatiou and D P K Ghikas Phys. Lett. A 368 206 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. S Ghose, R Stock, P Jessen, R Lal and A Silberfarb Phys. Rev. A 78 042318 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  26. H Frahm and H J Mikeska Z. Phys. B: Condens. Matter 60 117 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  27. F Haake, M Kus and R Scharf Z. Phys. B: Condens. Matter 65 381 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  28. S Chaudhury, A Smith, B E Anderson, S Ghose and P S Jessen Nature 461 768 (2009)

    Article  ADS  Google Scholar 

  29. G A. Smith, S Chaudhury and A Silberfarb et al. Phys. Rev. Lett. 93 163602 (2004)

    Article  ADS  Google Scholar 

  30. Z Sun, X Wang and C P Sun Phys. Rev. A 75 062312 (2007)

    Article  ADS  Google Scholar 

  31. D Rossini, G Benenti and G Casati Phys. Rev. E 74 036209 (2006)

    Article  ADS  Google Scholar 

  32. J M Radcliffe J. Phys. A 4 3313 (1971)

    Article  MathSciNet  Google Scholar 

  33. F T Arecchi, E Courtens, R Gilmore and H Thomas Phys. Rev. A 6 2211 (1972)

    Article  ADS  Google Scholar 

  34. G M D’Ariano, L R Evangelista and M Saraceno Phys. Rev. A 45 3646 (1992)

    Article  ADS  Google Scholar 

  35. P Kasperkovitz and M Peev Phys. Rev. Lett. 75 990 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. O Krospe and R Schmidt Phys. Rev. A 54 1154 (1996)

    Article  ADS  Google Scholar 

  37. Q-L Jie and S-J Wang J. Phys. A 33 2513 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Q-L Jie, S-J Wang and L-F Wei Phys. Rev. A 57 3262 (1998)

    Article  ADS  Google Scholar 

  39. C Leichtle, I S Averbuckh and W P Schleich Phys. Rev. Lett. 77 3999 (1996)

    Article  ADS  Google Scholar 

  40. Z Bialynicka-Birula Phys. Rev. 173 1207 (1968)

    Article  ADS  Google Scholar 

  41. V V Dodonov, L A Malkin and V I Man’ko Physica (Amsterdam) 72 597 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  42. B Yurke and D Stoler Phys. Rev. Lett. 57 13 (1986)

    Article  ADS  Google Scholar 

  43. J H Eberly, N B Narozhny and J Sanchez-Mondragon Phys. Rev. Lett. 44 1323 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  44. M Nauenberg, C Stroud and J Yeazell Sci. Am. (Int. Ed.) 270 (6) 24 (1994)

    Google Scholar 

  45. G Alber and P Zoller Phys. Rep. 199 231 (1991)

    Article  ADS  Google Scholar 

  46. C Jaffé and P Brumer J. Phys. Chem. 88 4829 (1984)

    Article  Google Scholar 

  47. C Jaffé and P Brumer J. Chem. Phys 82 2330 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  48. J Wilkie and P Brumer Phys. Rev. A 55 27 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  49. C C Martens and G S Ezra J. Chem. Phys. 83 2990 (1985)

    Article  ADS  Google Scholar 

  50. G J Milburn et al. Phys. Rev. A 55 4318 (1997)

    Article  ADS  Google Scholar 

  51. J Liu et al. Phys. Rev. A 72 063623 (2005)

    Article  ADS  Google Scholar 

  52. Q Xie and W Hai Eur. Phys. J. D 33 265 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Fundamental Research Funds for the Central Universities of China under Grants No. 10375042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Jie, Q. & Wang, Q. Revival and decay of entanglement in a two-qubit system coupled to a kicked top. Indian J Phys 86, 387–393 (2012). https://doi.org/10.1007/s12648-012-0033-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0033-2

Keywords

PACS Nos.

Navigation