Skip to main content
Log in

Ion acoustic solitary waves in nonplanar plasma with two-temperature kappa distributed electrons

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Ion acoustic (IA) solitons are studied in a two-temperature kappa-distributed electron plasma. As we expect for double-Boltzmann electrons, solitons of both polarities can exist in this model. Some density ratios support coexistence of both the polarities. We have also derived an deformed Korteweg–de Vries equation for IA waves by using reductive perturbation technique. The influence of geometry and suprathermality effects on IA waves is investigated. This model can support both compressive and rarefractive solitons for some plasma parameters. The low temperature electron component favors the emergence and development of rarefractive solitons. It is found that the amplitude and the velocity of IA solitons increase with superthermal index of hot electrons (κ 2). Also it is clear that the increase rate of velocity and amplitude in spherical geometry is greater than that for cylindrical geometry. We have considered the transverse perturbation for IA solitons with spherical symmetry. It is shown that the evolution of IA solitons is governed by a variable coefficient spherical Kadomtsev–Petviashvili equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R Z Sagdeev Rev. Plasma Phys. 4 23 (1966)

    ADS  Google Scholar 

  2. H Ikezi, R Taylor and D Baker Phys. Rev. Lett. 25 11 (1970)

    Article  ADS  Google Scholar 

  3. B N Goswami and B Buti Phys. Lett. A 57 149 (1976)

    Article  ADS  Google Scholar 

  4. B Buti Phys. Lett. A 76 251 (1980)

    Article  ADS  Google Scholar 

  5. T K Baluku and M A Hellberg Phys. Plasmas 19 012106 (2012)

    Article  ADS  Google Scholar 

  6. R Bharuthram and P K Shukla Planet. Space Sci. 40 973 (1992)

    Article  ADS  Google Scholar 

  7. J F McKenzie, F Verheest, T B Doyle and M A Hellberg Phys. Plasmas 11 176212 (2004)

    Article  Google Scholar 

  8. J F McKenzie, F Verheest, T B Doyle and M A Hellberg Phys. Plasmas 12 102305 (2005)

    Article  ADS  Google Scholar 

  9. F Verheest, T Cattaert and M A Hellberg Phys. Plasmas 12 082308 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  10. H Alinejad and A A Mamun Phys. Plasmas 18 112103 (2011)

    Article  ADS  Google Scholar 

  11. S I Popel, S V Vladimirov and P K Shukla Phys. Plasmas 2 716 (1995)

    Article  ADS  Google Scholar 

  12. A A Mamun Phys. Rev. E 55 1852 (1997)

    Article  ADS  Google Scholar 

  13. M Shahmansouri Chinese Phys. Lett. 29 105201 (2012)

    Article  Google Scholar 

  14. R A Cairns et al., Geophys. Res. Lett. 22 2709 (1995)

  15. H Abbasi and H H Pajouh Phys. Plasmas 14 012307 (2007)

    Article  ADS  Google Scholar 

  16. N S Saini, I Kourakis and M A Hellberg Phys. Plasmas 16 062903 (2009)

    Article  ADS  Google Scholar 

  17. I D Dubinova and A E Dubinov Tech. Phys. Lett. 32 575 (2006)

    Article  ADS  Google Scholar 

  18. M Shahmansouri and H Alinejad Astrophys. Space Sci. 344 463 (2013)

    Article  ADS  Google Scholar 

  19. M Tribeche, L Djebarni and R Amour Phys. Plasmas 17 042114 (2010)

    Article  ADS  Google Scholar 

  20. M Tribeche, R Amour and P K Shukla Phys. Rev. E 85 037401 (2012)

    Article  ADS  Google Scholar 

  21. S Maxon and J Viecelli Phys. Fluids 17 1614 (1974)

    Article  ADS  Google Scholar 

  22. S Maxon and J Viecelli Phys. Rev. Lett. 32 4 (1974)

    Article  ADS  Google Scholar 

  23. B Sahu and R Roychoudhury Phys. Plasmas 12 052106 (2005)

    Article  ADS  Google Scholar 

  24. B Sahu and R Roychoudhury Phys. Plasmas 10 4162 (2003)

    Article  ADS  Google Scholar 

  25. A P Misra and C Bhowmik Phys. Lett. A 369 90 (2007)

    Article  ADS  Google Scholar 

  26. F Haas Quantum Plasma (New York: Springer) (2011)

    Book  Google Scholar 

  27. F D Tappert Phys. Fluids 15 2446 (1972)

    Article  ADS  Google Scholar 

  28. S Tagare J. Plasma Phys. 15 1247 (1973)

    Article  ADS  Google Scholar 

  29. S Watanabe J. Phys. Soc. Jpn. 44 611 (1978)

    Article  ADS  Google Scholar 

  30. B Sahu Pramana 76 933 (2011)

    Article  ADS  Google Scholar 

  31. S Baboolal, R Bharuthram and M A Hellberg J. Plasma Phys. 44 1 (1990)

    Article  ADS  Google Scholar 

  32. S S Ghosh, K K Ghosh and A N Sekar Iyengar Phys. Plasmas 3 3939 (1996)

    Article  ADS  Google Scholar 

  33. B Oprescu Romanian Rep. Phys. 57 61 (2005)

    Google Scholar 

  34. K Roy and P Chatterjee Indian J. Phys. 85 1653 (2011)

    Article  ADS  Google Scholar 

  35. S N Paul, C Das, I Paul, B Bandyopadhyay, S Chattopadhyaya and S S De Indian J. Phys. 86 545 (2012)

    Article  ADS  Google Scholar 

  36. K Javidan and H R Pakzad Indian J. Phys. 86 1037 (2012); K Javidan and H R Pakzad Indian J. Phys. 87 83 (2013)

  37. A A Mamun and P K Shukla Phys. Lett. A 290 173 (2001)

    Article  ADS  MATH  Google Scholar 

  38. A A Mamun and P K Shukla Phys. Plasmas 9 1468 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  39. J K Xue Phys. Lett. A 314 479 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. J K Xue Phys. Plasmas 10 3430 (2003)

    Article  ADS  Google Scholar 

  41. M Mottaghizadeh and P Eslami Indian J. Phys. 86 71 (2012)

    Article  ADS  Google Scholar 

  42. P Eslami, M Mottaghizadeh and H R Pakzad Phys. Plasmas 18 072305 (2011)

    Article  ADS  Google Scholar 

  43. J Borhanian and M Shahmansouri Astrophys. Space Sci. 342 401 (2012)

    Article  ADS  Google Scholar 

  44. J F Zhang and Y Y Wang Phys. Plasmas 13 022303 (2006)

    Article  ADS  Google Scholar 

  45. D K Ghosh, P Chatterjee and B Das Indian J. Phys. 86 829 (2012)

    Article  ADS  Google Scholar 

  46. S Baboolal, R Bharuthram and M A Hellberg J. Plasma Phys. 41 341 (1989)

    Article  ADS  Google Scholar 

  47. W K M Rice, M A Hellberg, R L Mace and R Bharuthram Phys. Lett. A 174 416 (1993)

    Article  ADS  Google Scholar 

  48. S S Ghosh and A N Sekar Iyengar Phys. Plasmas 4 3204 (1997)

    Article  ADS  Google Scholar 

  49. T K Baluku, M A Hellberg and F Verheest Europhys. Lett. 91 15001 (2010)

    Article  ADS  Google Scholar 

  50. Y Nakamura and H Sugai Chaos. Solitons. Fractals 7 102 (1996)

    Article  Google Scholar 

  51. W Masood, S Hussain, S Mahmood and A M Mirza Chinese Phys. Lett. 26 122301 (2009)

    Article  ADS  Google Scholar 

  52. M Tribeche and M Bacha Phys. Plasmas 17 073701 (2010)

    Article  ADS  Google Scholar 

  53. P Schippers et al., J. Geophys. Res. 113 A07208 (2008)

    Article  ADS  Google Scholar 

  54. T K Baluku, M A Hellberg and R L Mace J. Geophys. Res. 116 A04227 (2011)

    Article  ADS  Google Scholar 

  55. N Jehan, S Mahmood and M Mirza Phys. Scr. 76 661 (2007)

    Article  ADS  MATH  Google Scholar 

  56. D Summers and R M Thorne Phys. Fluids B 3 1835 (1991)

    Article  ADS  Google Scholar 

  57. D Grecu and A T Grecu Romanian Rep. Phys. 63 1302 (2011)

    Google Scholar 

  58. Y Y Wang and J F Zhang Phys. Lett. A 352 115 (2006)

    Article  ADS  Google Scholar 

  59. A P Misra and C Bhowmik Phys. Plasmas 14 012309 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shahmansouri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahmansouri, M., Shahmansouri, B. & Darabi, D. Ion acoustic solitary waves in nonplanar plasma with two-temperature kappa distributed electrons. Indian J Phys 87, 711–716 (2013). https://doi.org/10.1007/s12648-013-0280-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-013-0280-x

Keywords

PACS Nos.

Navigation