Skip to main content
Log in

Effects of high-oxygen thermal annealing on structural, electrical and optical properties of undoped ZnO discs made from 40-nm ZnO nanoparticles

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this study, 40 nm nanoparticles of zinc oxide (ZnO) were used to prepare high-density ZnO discs. High-oxygen thermal annealing was found to have a significant effect on ZnO discs, especially in terms of grain growth enhancement. Moreover, unique secondary growth and multilayer grain growth of ZnO nanoparticles were observed. The strong solid state reaction during annealing was attributed to the high surface area of the ZnO nanoparticles, which promoted a strong surface reaction. The ZnO discs were found to contain an extremely high concentration of structural defects, as indicated by the dominant and broad visible photoluminescence emission. Furthermore, this visible emission was significantly increased after annealing treatment. Annealing treatment also improved grain crystallinity, as illustrated by the reduction of intrinsic compressive stress based on the X-ray diffraction lattice constant and full width at half maximum data. Electrical properties were also influenced by annealing treatment, with a marked drop in the breakdown voltage from 240 V (as-grown sample) to 140 V (800 °C sample). Resistivity also exhibited a dramatic drop from 240.2 kΩ cm (as-grown sample) to 72.26 kΩ cm (800 °C sample). Therefore, high-oxygen thermal annealing can be employed as a new technique for controlling the breakdown voltage of ZnO nanoparticle discs with improved structural properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M R Vaezi, S K Shendy and T Ebadzadeh Indian J. Phys. 86 9 (2012)

    Article  ADS  Google Scholar 

  2. C X Xu and X W Sun Appl. Phys. Lett. 83 3806 (2003)

  3. A Lincy, V Mahalakshmi, J Thomas and K V Saban Indian J. Phys. 86 109 (2012)

    Article  ADS  Google Scholar 

  4. S Sarmah and A Kumar Indian J. Phys. 85 713 (2011)

  5. M S Arnold, P Avouris, Z W Pan and Z L Wang J. Phys. Chem. B 107 659 (2003)

    Article  Google Scholar 

  6. M H Huang, Y Wu, H Feick, N Tran, E Weber and P Yang Adv. Mater. 13 113 (2001)

    Article  Google Scholar 

  7. S Mahmud J. Alloys Compd. 509 4035 (2011)

  8. Z B Fang, Z J Yan, Y S Tan, X Q Liu and Y Y Wang Appl. Surf. Sci. 241 303 (2005)

    Article  ADS  Google Scholar 

  9. M Wang, J Wang, W Chen, Y Cui and L Wang Mater. Chem. Phys. 97 219 (2006)

    Article  Google Scholar 

  10. R J Hong, J B Huang, H B He, Z X Fan and J D Shao Appl. Surf. Sci. 242 346 (2005)

    Article  ADS  Google Scholar 

  11. M L Cui, X M Wu, L J Zhuge and Y D Meng Vacuum 81 899 (2007)

    Article  Google Scholar 

  12. S Maniv, W D Westwood and E Colombini J. Vac. Sci. Technol. 20 162 (1982)

    Article  ADS  Google Scholar 

  13. R R Reeber J. Appl. Phys. 41 5063 (1970)

    Google Scholar 

  14. S Mitra et al. Indian J. Phys. 85 649 (2011)

    Article  ADS  Google Scholar 

  15. Y Lin et al. Thin Solid Films 492 101 (2005)

    Article  ADS  Google Scholar 

  16. Y C Liu, S K Tung and J H Hsieh J. Cryst. Growth 287 105 (2006)

    Article  ADS  Google Scholar 

  17. N Tigau, V Ciupina and G Prodan J. Optoelectron. Adv. Mater. 8 37 (2006)

    Google Scholar 

  18. W C Zhang, X L Wu, H T Chen, J Zhu and G S Huang J. Appl. Phys. 103 093718 (2008)

    Article  ADS  Google Scholar 

  19. C H Hung and W T Whang J. Mater. Chem. 15 267 (2005)

    Google Scholar 

  20. H Zeng, W Cai, J Hu, G Duan, P Liu and Y Li Appl. Phys. Lett. 88 171910 (2006)

    Article  ADS  Google Scholar 

  21. X M Sui, C L Shao and Y C Liu Appl. Phys. Lett. 87 113 (2005)

    Article  Google Scholar 

  22. A V Dijken, E A Meulenkamp, D Vanmaekelbergh and A Meijerink J. Phys. Chem. B 104 1715 (2000)

    Article  Google Scholar 

  23. K C Mishra, P C Schmidt, K H Johnson, B G DeBoer, J K Berkowitz and E A Dale Phys. Rev. B 42 1423 (1990)

    Article  ADS  Google Scholar 

  24. A Bera and D Basak Chem. Phys. Lett. 476 262 (2009)

  25. S A Studenikin, N Golego and M Cocivera J. Appl. Phys. 84 2287 (1998)

    Article  ADS  Google Scholar 

  26. D C Look, G M Renlund, R H Burgener and J R Sizelove Appl. Phys. Lett. 85 5269 (2004)

    Article  ADS  Google Scholar 

  27. T V Butkhuzi, A V Bureyev, A N Georgobiani, N P Kekelidze and T G Khulordava J. Cryst. Growth 117 366 (1992)

    Article  ADS  Google Scholar 

  28. B Lin, Z Fu and Y Jia Appl. Phys. Lett. 79 943 (2001)

    Article  ADS  Google Scholar 

  29. R Selomulya, S Ski, K Pita, C H Kam, Q Y Zhang and S Buddhudu Mater. Sci. Eng. B 100 136 (2003)

    Article  Google Scholar 

  30. A Mahmood, N Ahmed, Q Raza, T M Khan, M Mehmood, M M Hassan and N Mahmood Phys. Scr. 82 065 (2010)

    Google Scholar 

  31. C Wang, D Xu, X Xiao, Y Zhang and D Zhang J. Mater. Sci. 42 9795 (2007)

    Article  ADS  Google Scholar 

  32. D C Reynolds, D C Look, B Jogai and H Morkoc Solid State Commun. 101 643 (1997)

    Article  ADS  Google Scholar 

  33. A U Ubale and A N Bargal Indian. J. Phys. 84 1497 (2010)

  34. M Rajalakshmi, A K Arora, B S Bendre and S Mahamuni J. Appl. Phys. 87 2445 (2000)

    Article  ADS  Google Scholar 

  35. J M Calleja and M Cardona Phys. Rev. B 16 3753 (1977)

  36. S H Jeong, J K Kim and B T Lee J. Phys. D 36 2017 (2003)

    Article  ADS  Google Scholar 

  37. J N Zeng, J K Low, Z M Ren, T Liew and Y F Lu Appl. Surf. Sci. 362 197 (2002)

    Google Scholar 

  38. M Tzolov, N. Tzenov, D Malinovska, M Kalitzova, C Pizzuto, G Vitali, G Zollo and I G Ivanov Solid Films 379 28 (2000)

    Article  ADS  Google Scholar 

  39. X L Xu, S P Lau, J S Chen, G Y Chen and B K Tay J. Cryst. Growth 223 201 (2001)

    Article  ADS  Google Scholar 

  40. R L Petritz Phys. Rev. 104 1508 (1956)

  41. J W Orton, B J Goldsmith, J A Chapman and M J Powell J. Appl. Phys. 53 1602 (1982)

    Article  ADS  Google Scholar 

  42. S Ezhilvalavan and T Kutty Appl. Phys. Lett. 69 3540 (1996)

  43. A K Jonscher Phys. Status Solidi B 84 159 (1977)

  44. C S Pathak, D D Mishra, V Agarawala and M K Mandal Indian J. Phys. 86 777 (2012)

    Article  ADS  Google Scholar 

  45. A F Razak, S Devadason, C Sanjeeviraja and V Swaminatuan Chalcogenide Lett. 8 511 (2011)

    Google Scholar 

  46. D Adhikari, I S Jha and B P Singh Indian J. Phys. 86 783 (2012)

    Article  ADS  Google Scholar 

  47. H Abdullah, S Selmani, M N Norazia, P S Menon, S Shaari and C F Dee Sains Malaysiana 40 245 (2011)

    Google Scholar 

  48. A Tiwari, A K Gupta, R Bajpai and J M Keller Indian J. Phys. 85 1581 (2011)

    Article  ADS  Google Scholar 

  49. F I Ezema and U O A Nwankwo J. Nanomater. Biostruc. 5 981 (2010)

  50. Y G Wang, S P Lau, X H Zhang, H H Hng, H W Lee, S F Yu and B K Tay J. Cryst. Growth 259 335 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by an APEX grant (1002/PFIZIK/910305) from Universiti Sains Malaysia (USM). We express gratitude to the Cultural Mission of the Royal Embassy of Saudi Arabia. We further acknowledge the priceless assistance from the NOR Lab of USM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Sendi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sendi, R.K., Mahmud, S. Effects of high-oxygen thermal annealing on structural, electrical and optical properties of undoped ZnO discs made from 40-nm ZnO nanoparticles. Indian J Phys 87, 523–531 (2013). https://doi.org/10.1007/s12648-013-0249-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-013-0249-9

Keywords

PACS Nos.

Navigation