Skip to main content
Log in

Enhancing the electrical and dielectric properties of ZnO nanoparticles through Fe doping for electric storage applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present paper provides significant results about the impact of iron doping on the ZnO nanoparticles’ structural and electrical properties. Fe-doped ZnO (ZnO:Fe) nanoparticles with varying doping concentrations from 0 to 5% were effectively synthesized by a simple co-precipitation method. The X-ray diffraction (XRD) studies revealed that all compositions crystallize in the hexagonal wurtzite structure with the P63mc space group. They also proved the presence of a secondary phase accredited to ZnFe2O4 for ZnO:Fe 5% sample. Concerning the transmission electron microscopy, it demonstrated that the formed nanoparticles are spherical. The electrical properties were explored by complex impedance spectroscopy in the 40–107 Hz frequency range and 400–500 K temperature domains. The comparative Nyquist plots at fixed temperature 440 K suggested that the impedance value dropped with the augmentation of Fe doping concentration. Furthermore, the electrical conductivity and dielectric properties were explored as a function of frequency and temperature in the same range. The obtained results demonstrated that iron doping enhanced the AC conductivity at the same selected temperature 440 K. The analysis of the AC conductivity frequency dependence of the ZnO:Fe 1% sample was carried out by Jonscher’s universal power law and the conduction mechanism was interpreted by the overlapping-large polaron tunneling (OLPT) model. Both impedance and modulus analyses were found to display the contribution of grain and grain boundary to the electrical response of the ZnO:Fe 1% sample. Moreover, the dielectric characterization had affirmed that both dielectric constant and dielectric loss decrease with the increase in frequency and increase with the increase in temperature. These two parameters were found to augment with Fe doping. The observed properties had proven that Fe doped ZnO nanoparticles was very functional for the electric storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. A. Tabib, N. Sdiri, H. Elhouichet, M. Férid, Investigations on electrical conductivity and dielectric properties of Na doped ZnO synthesized from sol gel method. J. Alloys Compd. 622, 687–694 (2015)

    CAS  Google Scholar 

  2. Z. Benzarti, M. Khelifi, I. Halidou, B. El Jani, Study of surface and interface roughness of GaN-based films using spectral reflectance measurements. J. Electron. Mater. 44, 3243–3252 (2015)

    CAS  Google Scholar 

  3. Z. Benzarti, M. Khelifi, A. Khalfallah, B. El, Jani, Assessment of refractive index changes by spectral reflectance in the first stages of AlxGa1−xN layer growth using SiN treatment. J. Mater. Sci. Mater. Electron. 27, 6336–6346 (2016)

    CAS  Google Scholar 

  4. M. Salah, S. Azizi, A. Boukhachem, C. Khaldi, M. Amlouk, J. Lamloumi, Rietveld refinement of X-ray diffraction, impedance spectroscopy and dielectric relaxation of Li-doped ZnO-sprayed thin films. Appl. Phys. A 615, 125–145 (2019)

    Google Scholar 

  5. P. Norouzzadeh, Kh. Mabhouti, M.M. Golzan, R. Naderali, Comparative study on dielectric and structural properties of undoped, Mn-doped, and Ni-doped ZnO nanoparticles by impedance spectroscopy analysis. J. Mater. Sci. Mater. Electron. 31, 7335–7347 (2020)

    CAS  Google Scholar 

  6. R.K. Yadav, P. Chauhan, Estimation of lattice strain in Mn-doped ZnO nanoparticles and its effect on structural and optical properties. Indian J. Pure Appl. Phys. 57, 881–890 (2019)

    Google Scholar 

  7. C. Belkhaoui, N. Mzabi, H. Smaoui, P. Daniel, Enhancing the structural, optical and electrical properties of ZnO nanopowders through (Al + Mn) doping. Results Phys. 12, 1686–1696 (2019)

    Google Scholar 

  8. H. Saadi, F.I.H. Rhouma, Z. Benzarti, Z. Bougrioua, S. Guermazi, K. Khirouni, Electrical conductivity improvement of Fe doped ZnO nanopowders. Mater. Res. Bull. 129, 110884–110895 (2020)

    CAS  Google Scholar 

  9. F.I.H. Rhouma, F. Belkhiria, E. Bouzaiene, M. Daoudi, K. Taibi, J. Dhahri, R. Chtourou, The structure and photoluminescence of a ZnO phosphor synthesized by the sol gel method under praseodymium doping. RSC Adv. 9, 5206–5217 (2019)

    CAS  Google Scholar 

  10. S. Das, S. Das, S. Sutradhar, Effect of Gd3+ and Al3+ on optical and dielectric properties of ZnO nanoparticle prepared by two-step hydrothermal method. Ceram. Int. 43, 6932–6941 (2017)

    CAS  Google Scholar 

  11. X. Yin, B. Wang, M. He, T. He, Facile synthesis of ZnO nanocrystals via a solid state reaction for high performance plastic dye-sensitized solar cells. Nano Res. 5, 1–10 (2012)

    CAS  Google Scholar 

  12. M. Gusatti, C.E.M. Campos, D.A.R. Souza, H.G. Riella, Formation of ZnO nanocrystals and their in situ generation on textile material via solochemical method. J. Nanosci. Nanotechnol. 17, 3533–3542 (2017)

    CAS  Google Scholar 

  13. H.S. Wasly, M.S.A. El-Sadek, K.M. Batoo, Novel synthesis, structural, optical properties and antibacterial activity of ZnO nanoparticles. Mater. Res. Express. 6, 055003–055017 (2019)

    CAS  Google Scholar 

  14. C. Belkhaoui, R. Lefi, N. Mzabi, H. Smaoui, Synthesis, optical and electrical properties of Mn doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 29, 7020–7031 (2018)

    CAS  Google Scholar 

  15. K. Badreddine, A. Srour, R. Awad, A.I. Abou-Aly, The investigation of mechanical and dielectric properties of Samarium doped ZnO nanopartiles. Mater. Res. Express. 7, 025016–025027 (2020)

    CAS  Google Scholar 

  16. A. Manohar, C. Krishnamoorthi, K.C. Naidu, C. Pavithra, Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal refux method. Appl. Phys. A 125, 477–486 (2019)

    CAS  Google Scholar 

  17. A. Manohar, V. Vijayakanth, R. Hong, Solvothermal refux synthesis of NiFe2O4 nanocrystals dielectric and magnetic hyperthermia properties. J. Mater. Sci. Mater. Electron. 31, 799–806 (2020)

    CAS  Google Scholar 

  18. A. Manohar, D.D. Geleta, C. Krishnamoorthi, J. Lee, Synthesis, characterization and magnetic hyperthermia properties of nearly monodisperse CoFe2O4 nanoparticles. Ceram. Int. 46, 28035–28041 (2020)

    CAS  Google Scholar 

  19. A. Manohar, C. Krishnamoorthi, Site selective Cu2+ substitution in single crystal Fe3O4 biocompatible nanospheres by solvothermal reflux method. J. Cryst. Growth. 473, 66–74 (2017)

    CAS  Google Scholar 

  20. A. Manohar, C. Krishnamoorthi, Magnetic and photocatalytic studies on Zn1−xMgxFe2O4 nanocolloids synthesized by solvothermal reflux method. J. Photochem. Photobiol. B 177, 95–104 (2017)

    CAS  Google Scholar 

  21. A. Manohar, C. Krishnamoorthi, Synthesis and magnetic hyperthermia studies on high susceptible Fe1− xMgxFe2O4 superparamagnetic nanospheres. J. Magn. Magn. 443, 267–274 (2017)

    CAS  Google Scholar 

  22. A. Manohar, C. Krishnamoorthi, Structural, Raman, magnetic and other properties of co-substituted ZnFe2O4 nanocrystals synthesized by solvothermal reflux method. J. Mater. Sci. Mater. Electron. 29, 737–745 (2020)

    Google Scholar 

  23. A. Manohar, C. Krishnamoorthi, Photocatalytic study and superparamagnetic nature of Zn-doped MgFe2O4 colloidal size nanocrystals prepared by solvothermal reflux method. J. Photochem. Photobiol. B 173, 456–465 (2017)

    CAS  Google Scholar 

  24. A. Manohar, C. Krishnamoorthi, K.C.B. Naidu, B. Narasaiah, Dielectric, magnetic hyperthermia and photocatalytic properties of Mg0.7Zn0.3Fe2O4 nanocrystals. IEEE Trans. Magn. (2020). https://doi.org/10.1109/TMAG.2020.3024717

    Article  Google Scholar 

  25. M. Cernea, V. Mihalache, E.C. Secu, R. Trusca, V. Bercu, L. Diamandescu, Structural, morphological, ferromagnetic and photoluminescence properties of Fe-doped ZnO, prepared by hydrothermal route. Superlattices Microstruct. 104, 362–373 (2017)

    CAS  Google Scholar 

  26. R. Elilarassi, G. Chandrasekaran, Optical, electrical and ferromagnetic studies of ZnO: Fe diluted magnetic semiconductor nanoparticles for spintronic applications. Spectrochim. Acta A 186, 120–131 (2017)

    CAS  Google Scholar 

  27. S. Zaineb, S. Atiq, A. Mahmood, S.M. Ramay, S. Riaz, S. Naseem, Thermal tuning of electrical and dielectric characteristics of Mn-doped Zn0.95Fe0.05O dilute magnetic semiconductors. J. Mater. Sci. Mater. Electron. 29, 3943–3951 (2018)

    CAS  Google Scholar 

  28. S. Sharma, K. Nanda, R.S. Kundu, R. Punia, N. Kishore, Structural properties, conductivity, dielectric studies and modulus formulation of Ni modified ZnO nanoparticles. J. Mol. Condens. Nano Phys. 2, 15–31 (2015)

    Google Scholar 

  29. P. Norouzzadeh, Kh. Mabhouti, M.M. Golzan, R. Naderali, Effect of Mn-substitution on impedance spectroscopy and magnetic properties of Al-doped ZnO nanoparticles. Optik 31, 1–32 (2020)

    Google Scholar 

  30. L. Chouiref, S. Jaballah, M. Erouel, N. Moutia, W. Hzez, I. Ghiloufi, L. El Mir, Development and electrical characterization of screen-printed electrode based on ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 31, 13899–13908 (2020)

    CAS  Google Scholar 

  31. A.K. Zak, W.A. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci. 13, 251–256 (2011)

    Google Scholar 

  32. D. Nath, F. Singh, R. Das, X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study. Mater. Chem. Phys. 239, 122021–122029 (2020)

    CAS  Google Scholar 

  33. A. Manohar, C. Krishnamoorthi, Low Curie-transition temperature and superparamagnetic nature of Fe3O4 nanoparticles prepared by colloidal nanocrystal synthesis. Mater. Chem. Phys. 192, 235–243 (2017)

    CAS  Google Scholar 

  34. A. Manohar, C. Krishnamoorthi, Structural, optical, dielectric and magnetic properties of CaFe2O4 nanocrystals prepared by solvothermal reflux method. J. Alloys Compd. 722, 818–827 (2017)

    CAS  Google Scholar 

  35. A. Manohar, C. Krishnamoorthi, C. Pavithra, N. Thota, Magnetic hyperthermia and photocatalytic properties of MnFe2O4 nanoparticles synthesized by solvothermal reflux method. J. Supercond. Nov. Magn. (2020). https://doi.org/10.1007/s10948-020-05685-x

    Article  Google Scholar 

  36. M. Jebli, C. Rayssi, J. Dhahri, K. Khirouni, Investigation of electrical properties and conduction mechanism using CBH model of Ba0.97La0.02Ti1−xNb4x/5O3 (x = 0.00 and 0.02) compounds. Appl. Phys. A 109, 126–141 (2020)

    Google Scholar 

  37. K.C.B. Naidu, V.N. Reddy, T.S. Sarmash, D. Kothandan, T. Subbarao, N.S. Kumar, Structural, morphological, electrical, impedance and ferroelectric properties of BaO-ZnO-TiO2 ternary system. J. Aust. Ceram. Soc. 55, 201–218 (2019)

    Google Scholar 

  38. R. Chtourou, B. Louati, K. Guidara, Structural and ac conductivity studies of sodium tetralead triphosphate compound. J. Alloys Compd. 732, 286–292 (2018)

    CAS  Google Scholar 

  39. R. Nasser, W.B.H. Othmen, H. Elhouichet, Effect of Sb doping on the electrical and dielectric properties of ZnO nanocrystals. Ceram. Int. 45, 8000–8007 (2019)

    CAS  Google Scholar 

  40. T. Larbi, B. Ouni, A. Boukachem, K. Boubaker, M. Amlouk, Electrical measurements of dielectric properties of molybdenum-doped zinc oxide thin films. Mater. Sci. Semicond. Process. 22, 50–58 (2014)

    CAS  Google Scholar 

  41. I. Ghamgui, A. Aydi, Z. Sassi, L. Seveyrat, V. Perrin, A. Maalej, L. Lebrun, H. Khemakhem, Structural, dielectric and impedance spectroscopy studies of (Na0.5Bi0.5)(Zr0.025Ti0.975)O3 ceramic. J. Mater. Sci.: Mater. Electron. 28, 17482–17489 (2017)

    CAS  Google Scholar 

  42. T. Rhimi, M. Toumi, K. Khirouni, S. Guermazi, AC conductivity, electric modulus analysis of KLi(H2PO4)2 compound. J. Alloys Compd. 714, 546–552 (2017)

    CAS  Google Scholar 

  43. H.E. Sekrafi, A.B. Kharrat, M.A. Wederni, N. Chniba-Boudjada, K. Khirouni, W. Boujelben, Impact of low titanium concentration on the structural, electrical and dielectric properties of Pr0.75Bi0.05Sr0.1Ba 0.1Mn1−xTixO3 (x = 0, 0.04) compounds. J. Mater. Sci.: Mater. Electron. 30, 876–891 (2019)

    CAS  Google Scholar 

  44. M. ben Abdessalem, A. Aydi, N. Abdelmoula, Raman scattering, structural, electrical studies and conduction mechanism of Ba0.9Ca0.1Ti0.95 Zr0.05O3 ceramic. J. Alloys Compd. 774, 685–693 (2019)

    Google Scholar 

  45. A. Chandran, M.S. Samuel, J. Koshy, K.C. George, Dielectric relaxation behavior of CdS nanoparticles and nanowires. J. Mater. Sci. 46, 4646–4653 (2011)

    CAS  Google Scholar 

  46. F. Mizouri, N. Abdelmoula, D. Mezzane, H. Khemakhem, Impedance spectroscopy and conduction mechanism of multiferroic Bi0.8(Ba0.9Ca0.1)0.8Fe0.8(Ti0.9Sn0.1)0.8O3. J. Alloys Compd. 763, 570–580 (2018)

    CAS  Google Scholar 

  47. M. Jebli, C. Rayssi, N. Hamdaoui, S. Rabaoui, J. Dhahri, M. Ben Henda, I. Shaarany, Effect of Nb-doping on the structural and electrical properties of Ba0.97La0.02Ti1-xNb4x/5O3 ceramics at room temperature synthesized by molten-salt method. J. Alloys Compd. 784, 204–212 (2019)

    CAS  Google Scholar 

  48. K.T. Selvi, K.A. Mangai, M. Priya, S. Sagadevan, Investigation of the dielectric and impedance properties of ZnO/MgO nanocomposite. Phys. B 534, 412355–412392 (2020)

    Google Scholar 

  49. N. Chakchouk, B. Louati, K. Guidara, Ionic conductivity and dielectric relaxation studies of a low-temperature form of silver zinc phosphate. J. Alloys Compd. 747, 543–549 (2018)

    CAS  Google Scholar 

  50. A. Rahal, S.M. Borchani, K. Guidara, M. Megdiche, Studies of electric, dielectric, and conduction mechanism of LiNiV0.5P0.5O4. J. Alloys Compd. 735, 1885–1892 (2018)

    CAS  Google Scholar 

  51. C. Rayssi, F.I.H. Rhouma, J. Dhahri, K. Khirouni, M. Zaidi, H. Belmabrouk, Structural, electric and dielectric properties of Ca0.85Er0.1Ti1−xCo4x/3O3(0 ≤ x ≤ 0.1). Appl. Phys. A 778, 123–135 (2017)

    Google Scholar 

  52. J. Jadhav, S. Biswas, Structural and electrical properties of ZnO: Ag core-shell nanoparticles synthesized by a polymer precursor method. Ceram. Int. 42, 16598–16610 (2016)

    CAS  Google Scholar 

  53. N. Bhakta, P.K. Chakrabarti, XRD analysis, Raman, AC conductivity and dielectric properties of Co and Mn co-doped SnO2 nanoparticles. Appl. Phys. A 73, 125–135 (2019)

    Google Scholar 

  54. O. Polat, M. Coskun, F.M. Coskun, J. Zlamal, B.Z. Kurt, Z. Durmus, M. Caglar, A. Turut, Co doped YbFeO3: exploring the electrical properties via tuning the doping level. Ionics 25, 4013–4029 (2019)

    CAS  Google Scholar 

  55. R. Khan, Zulfiqar, C. I. Levartoski de Araujo, T. Khan, M.-Ur-Rahman, Z.-Ur-Rehman, A. Khan, B. Ullah, S. Fashu, Influence of oxygen vacancies on the structural, dielectric, and magnetic properties of (Mn, Co) co-doped ZnO nanostructures. J. Mater. Sci.: Mater. Electron. 29, 9785–9795 (2018)

  56. M. Ashokkumar, S. Muthukumaran, Effect of Cr-doping on dielectric, electric and magnetic properties of Zn0.96Cu0.04O nanopowders. Powder Technol. 268, 80–85 (2014)

    CAS  Google Scholar 

  57. C.C. Naik, A.V. Salker, Tailoring magnetic and dielectric properties of Co0.9Cu0.1Fe2O4 with substitution of small fractions of Gd3+ ions. J. Mater. Sci. Mater. Electron. 29, 5380–5390 (2018)

    CAS  Google Scholar 

  58. K.M. Batoo, S. Kumar, C.G. Lee, Alimuddin, Study of dielectric and ac impedance properties of Ti doped Mn ferrites. Curr. Appl. Phys. 9, 1397–1406 (2009)

    Google Scholar 

  59. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. Appl. Phys. 73, 348–366 (1993)

    CAS  Google Scholar 

  60. Y. Zulfiqar, J. Yuan, W. Yang, Z. Wang, J. Ye, Lu, Structural, dielectric and ferromagnetic behavior of (Zn, Co) co-doped SnO2 nanoparticles. Ceram. Int. 42, 17128–17136 (2016)

    CAS  Google Scholar 

  61. S. Khera, P. Chand, Influence of different solvents on the structural, optical, impedance and dielectric properties of ZnO nanoflakes. Chin. J. Phys. 57, 28–46 (2019)

    CAS  Google Scholar 

  62. A. Jamil, S. Fareed, N. Tiwari, C. Li, B. Cheng, X. Xu, M.A. Rafiq, Effect of titanium doping on conductivity, density of states and conduction mechanism in ZnO thin film. Appl. Phys. A 238, 125–133 (2019)

    Google Scholar 

  63. H. Slimi, A. Oueslati, A. Aydi, Vibrational studies, dielectric, and electrical conductivity in (Ba0.95Ca0.05)0.1(Ti0.8Sn0.2)0.1Na 0.9Nb0.9O3 ferroelectric ceramic. Appl. Phys. A 510, 125–134 (2019)

    Google Scholar 

  64. U. Singh, N. Kumari, A.K. Jha, K.P. Chandra, J. Kolte, A.R. Kulkarni, K. Prasad, Silver nanoparticles added PVDF/ZnO nanocomposites: Synthesis and characterization. AIP Conf 2018, 030056–030060 (1953)

    Google Scholar 

  65. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, A. Baykal, I. Ercan, Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 30, 9520–9530 (2019)

    CAS  Google Scholar 

  66. F. Sallemi, B. Louati, K. Guidara, Electrical conductivity and dielectric behavior in sodium zinc divanadates. Phys. B 452, 142–147 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of DGRST. They would like to thank Prof. Ali Khalfallah for his helpful contribution in this work

Author information

Authors and Affiliations

Authors

Contributions

HS: synthese of samples, investigation, data curation, formal analysis, visualization, writing—original draft, writing—review & editing. ZB: conceptualization, methodology, formal analysis, validation, writing—review & editing, writing—original draft, resources, supervision. FIHR: formal analysis, investigation. PS: morphological testing, data analysis. SG: precursors. KK: electric and dielectric testing. MTV: investigation, discussion.

Corresponding author

Correspondence to H. Saadi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadi, H., Benzarti, Z., Rhouma, F.I.H. et al. Enhancing the electrical and dielectric properties of ZnO nanoparticles through Fe doping for electric storage applications. J Mater Sci: Mater Electron 32, 1536–1556 (2021). https://doi.org/10.1007/s10854-020-04923-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04923-1

Navigation