Skip to main content

Advertisement

Log in

Paraquat Inhibits Autophagy Via Intensifying the Interaction Between HMGB1 and α-Synuclein

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Paraquat, a widely used herbicide, is associated with an increased risk of Parkinson’s disease (PD). PQ induces upregulation and accumulation of α-synuclein in neurons, which is one of the major pathological hallmarks of PD. Autophagy, as the major mechanism for the clearance of α-synuclein, is disrupted upon pesticide exposure as well as in PD patients. Meanwhile, HMGB1 is involved in autophagy dysfunction and particularly relevant to PD. However, whether PQ exposure affects HMGB1, α-synuclein, and autophagy function have rarely been reported. In this study, we found that PQ exposure impaired autophagy function via disturbing the complex formation of HMGB1 and Beclin1. Moreover, the expression of α-synuclein is modulated by HMGB1 and the interaction between HMGB1 and α-synuclein was intensified by PQ exposure. Taken together, our results revealed that HMGB1-mediated α-synuclein accumulation could competitively perturb the complex formation of HMGB1 and Beclin1, thereby inhibiting the autophagy function in SH-SY5Y cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

The data that support the findings of this study are available from the authors upon reasonable request.

References

  • Bell CW et al (2006) The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol 291(6):C1318–C1325

    Article  CAS  Google Scholar 

  • Bertram L, Tanzi RE (2005) The genetic epidemiology of neurodegenerative disease. J Clin Invest 115(6):1449–1457

    Article  CAS  Google Scholar 

  • Brichta L, Greengard P (2014) Molecular determinants of selective dopaminergic vulnerability in Parkinson’s disease: an update. Front Neuroanat 8:152

    Article  Google Scholar 

  • Cook C, Stetler C, Petrucelli L (2012) Disruption of protein quality control in Parkinson’s disease. Cold Spring Harb Perspect Med 2(5):a009423

    Article  Google Scholar 

  • Dai H et al (2015) PINK1/Parkin-mediated mitophagy alleviates chlorpyrifos-induced apoptosis in SH-SY5Y cells. Toxicology 334:72–80

    Article  CAS  Google Scholar 

  • Ding WX, Yin XM (2008) Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy 4(2):141–150

    Article  CAS  Google Scholar 

  • Ebrahimi-Fakhari D et al (2011) Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of alpha-synuclein. J Neurosci 31(41):14508–14520

    Article  CAS  Google Scholar 

  • Erlich S et al (2007) Differential interactions between Beclin 1 and Bcl-2 family members. Autophagy 3(6):561–568

    Article  CAS  Google Scholar 

  • He B et al (2020) The regulation of autophagy in the pesticide-induced toxicity: Angel or demon?. Chemosphere 242:125138

    Article  CAS  Google Scholar 

  • Hou X et al (2020) Autophagy in Parkinson’s disease. J Mol Biol 432(8):2651–2672

    Article  CAS  Google Scholar 

  • Huang J et al (2017) HMGB1 mediates autophagy dysfunction via perturbing Beclin1-Vps34 complex in dopaminergic cell model. Front Mol Neurosci 10:13

    PubMed  PubMed Central  Google Scholar 

  • Janda E et al (2015) Parkinsonian toxin-induced oxidative stress inhibits basal autophagy in astrocytes via NQO2/quinone oxidoreductase 2: Implications for neuroprotection. Autophagy 11(7):1063–1080

    Article  CAS  Google Scholar 

  • Kang R et al (2010) HMGB1: a novel Beclin 1-binding protein active in autophagy. Autophagy 6(8):1209–1211

    Article  CAS  Google Scholar 

  • Kimura S, Noda T, Yoshimori T (2008) Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct Funct 33(1):109–122

    Article  CAS  Google Scholar 

  • Lindersson EK et al (2004) alpha-Synuclein filaments bind the transcriptional regulator HMGB-1. NeuroReport 15(18):2735–2739

    CAS  PubMed  Google Scholar 

  • Lou D et al (2012) Paraquat affects the homeostasis of dopaminergic system in PC12 cells. Pestic Biochem Physiol 103(2):81–86

    Article  CAS  Google Scholar 

  • Lou D et al (2016) Does age matter? Comparison of neurobehavioral effects of paraquat exposure on postnatal and adult C57BL/6 mice. Toxicol Mech Methods 26(9):667–673

    Article  CAS  Google Scholar 

  • Mader BJ et al (2012) Rotenone inhibits autophagic flux prior to inducing cell death. ACS Chem Neurosci 3(12):1063–1072

    Article  CAS  Google Scholar 

  • Magna M, Pisetsky DS (2014) The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol Med 20:138–146

    Article  Google Scholar 

  • Mak SK et al (2010) Lysosomal degradation of alpha-synuclein in vivo. J Biol Chem 285(18):13621–13629

    Article  CAS  Google Scholar 

  • Mamelak M (2018) Parkinson’s disease, the dopaminergic neuron and gammahydroxybutyrate. Neurol Ther 7(1):5–11

    Article  Google Scholar 

  • Manning-Bog AB et al (2002) The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J Biol Chem 277(3):1641–1644

    Article  CAS  Google Scholar 

  • Pan T et al (2008) The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 131(Pt 8):1969–1978

    Article  Google Scholar 

  • Poehler AM et al (2014) Autophagy modulates SNCA/alpha-synuclein release, thereby generating a hostile microenvironment. Autophagy 10(12):2171–2192

    Article  CAS  Google Scholar 

  • Pollanen MS, Dickson DW, Bergeron C (1993) Pathology and biology of the Lewy body. J Neuropathol Exp Neurol 52(3):183–191

    Article  CAS  Google Scholar 

  • Priyadarshi A et al (2001) Environmental risk factors and Parkinson’s disease: a metaanalysis. Environ Res 86(2):122–127

    Article  CAS  Google Scholar 

  • Rekha KR, Inmozhi Sivakamasundari R (2018) Geraniol protects against the protein and oxidative stress induced by rotenone in an in vitro model of Parkinson’s disease. Neurochem Res 43(10):1947–1962

    Article  CAS  Google Scholar 

  • Santoro M et al (2016) In-vivo evidence that high mobility group box 1 exerts deleterious effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model and Parkinson’s disease which can be attenuated by glycyrrhizin. Neurobiol Dis 91:59–68

    Article  CAS  Google Scholar 

  • Sasaki T et al (2016) Anti-high mobility group box 1 antibody exerts neuroprotection in a rat model of Parkinson’s disease. Exp Neurol 275(Pt 1):220–231

    Article  CAS  Google Scholar 

  • Sims GP et al (2010) HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28:367–388

    Article  CAS  Google Scholar 

  • Song JX et al (2014) HMGB1 is involved in autophagy inhibition caused by SNCA/alpha-synuclein overexpression: a process modulated by the natural autophagy inducer corynoxine B. Autophagy 10(1):144–154

    Article  CAS  Google Scholar 

  • Spillantini MG et al (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840

    Article  CAS  Google Scholar 

  • Su C, Niu P (2015) Low doses of single or combined agrichemicals induces alpha-synuclein aggregation in nigrostriatal system of mice through inhibition of proteasomal and autophagic pathways. Int J Clin Exp Med 8(11):20508–20515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanner CM et al (2011) Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect 119(6):866–872

    Article  CAS  Google Scholar 

  • Vogiatzi T et al (2008) Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem 283(35):23542–23556

    Article  CAS  Google Scholar 

  • Wills J et al (2010) Elevated tauopathy and alpha-synuclein pathology in postmortem Parkinson’s disease brains with and without dementia. Exp Neurol 225(1):210–218

    Article  CAS  Google Scholar 

  • Wills J et al (2012) Paraquat, but not maneb, induces synucleinopathy and tauopathy in striata of mice through inhibition of proteasomal and autophagic pathways. PLoS One 7(1):e30745

    Article  CAS  Google Scholar 

  • Xilouri M, Brekk OR, Stefanis L (2013) alpha-Synuclein and protein degradation systems: a reciprocal relationship. Mol Neurobiol 47(2):537–551

    Article  CAS  Google Scholar 

  • Zeng R et al (2019) Icariin-mediated activation of autophagy confers protective effect on rotenone induced neurotoxicity in vivo and in vitro. Toxicol Rep 6:637–644

    Article  CAS  Google Scholar 

Download references

Funding

The present study was supported by the Ningxia Natural Science Foundation (2020AAC02018), “Light of the West” talent training program (XAB2020YW14), and Ministry of education “Chunhui plan” cooperative scientific research (Z2016059).

Author information

Authors and Affiliations

Authors

Contributions

K.W., Bao.Z., Bin.Z., and K.W. did the experiments. K.W. and Bao.Z. analyzed the data. T.T. and W.Y. maintained the cell line. M.H. and K.W. designed the experiments and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Min Huang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Zhang, B., Zhang, B. et al. Paraquat Inhibits Autophagy Via Intensifying the Interaction Between HMGB1 and α-Synuclein. Neurotox Res 40, 520–529 (2022). https://doi.org/10.1007/s12640-022-00490-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-022-00490-x

Keywords

Navigation