Skip to main content

Advertisement

Log in

Nickel-Induced Developmental Neurotoxicity in C. elegans Includes Cholinergic, Dopaminergic and GABAergic Degeneration, Altered Behaviour, and Increased SKN-1 Activity

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Nickel (Ni) is a ubiquitous metal in the environment with increasing industrial application. While environmental and occupational exposure to Ni compounds has been known to result in toxicities to several organs, including the liver, kidney, lungs, skin and gonads, neurotoxic effects have not been extensively investigated. In this present study, we investigated specific neuronal susceptibility in a C. elegans model of acute Ni neurotoxicity. Wild-type worms and worms expressing green fluorescent protein (GFP) in either cholinergic, dopaminergic or GABAergic neurons were treated with NiCl2 for 1 h at the first larval (L1) stage. The median lethal dose (LD50) was calculated to be 5.88 mM in this paradigm. Morphology studies of GFP-expressing worms showed significantly increasing degeneration of cholinergic, dopaminergic and GABAergic neurons with increasing Ni concentration. Significant functional changes in locomotion and basal slowing response assays reflected that cholinergic and dopaminergic neuronal function, respectively, were impaired due to Ni treatment. Interestingly, a small but significant number of worms exhibited shrinker phenotype upon Ni exposure but no loopy head foraging behaviour was observed suggesting that function of D-type GABAergic neurons of C elegans may be specifically attenuated while the RME subset of GABAergic neurons are not. GFP expression due to induction of glutathione S-transferase 4 (gst-4), a target of Nrf2 homolog skn-1, was increased in a Pgst-4::GFP worm highlighting Ni-induced oxidative stress. RT-qPCR verified upregulation of this expression of gst-4 immediately after exposure. These data suggest that oxidative stress is associated with neuronal damage and altered behaviour due to developmental Ni exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Acknowledgements

The authors acknowledge the Analytical Imaging Facility, Albert Einstein College of Medicine, USA (NCI: P30CA013330).

Funding

OMI acknowledges the support of International Brain Research Organization (IBRO)-International Society for Neurochemistry (ISN) Research Fellowship 2017. MA was supported by National Institute of Health (NIH) R01 ES10563, R01 ES07331 and R01 ES020852.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Omamuyovwi M. Ijomone or Michael Aschner.

Ethics declarations

Conflict of Interests

The authors declare no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ijomone, O.M., Miah, M.R., Akingbade, G.T. et al. Nickel-Induced Developmental Neurotoxicity in C. elegans Includes Cholinergic, Dopaminergic and GABAergic Degeneration, Altered Behaviour, and Increased SKN-1 Activity. Neurotox Res 37, 1018–1028 (2020). https://doi.org/10.1007/s12640-020-00175-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-020-00175-3

Keywords

Navigation