Skip to main content

Advertisement

Log in

Neuroprotective Effects of Metallothionein Against Rotenone-Induced Myenteric Neurodegeneration in Parkinsonian Mice

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a neurodegenerative disease with motor symptoms as well as non-motor symptoms that precede the onset of motor symptoms. Mitochondrial complex I inhibitor, rotenone, has been widely used to reproduce PD pathology in the central nervous system (CNS) and enteric nervous system (ENS). We reported previously that metallothioneins (MTs) released from astrocytes can protect dopaminergic neurons against oxidative stress. The present study examined the changes in MT expression by chronic systemic rotenone administration in the striatum and colonic myenteric plexus of C57BL mice. In addition, we investigated the effects of MT depletion on rotenone-induced neurodegeneration in CNS and ENS using MT-1 and MT-2 knockout (MT KO) mice, or using primary cultured neurons from MT KO mice. In normal C57BL mice, subcutaneous administration of rotenone for 6 weeks caused neurodegeneration, increased MT expression with astrocytes activation in the striatum and myenteric plexus. MT KO mice showed more severe myenteric neuronal damage by rotenone administration after 4 weeks than wild-type mice, accompanied by reduced astroglial activation. In primary cultured mesencephalic neurons from MT KO mice, rotenone exposure induced neurotoxicity in dopaminergic neurons, which was complemented by addition of recombinant protein. The present results suggest that MT seems to provide protection against neurodegeneration in ENS of rotenone-induced PD model mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

ChAT:

Choline acetyltransferase

CNS:

Central nervous system

DAT:

Dopamine transporter

DMSO:

Dimethylsulphoxide

ENS:

Enteric nervous system

GFAP:

Glial fibrillary acidic protein

KO:

Knockout

LB:

Lewy-body

LN:

Lewy-neurite

MT:

Metallothionein

PB:

Phosphate buffer

PBS-T:

Phosphate buffered saline with 0.2 % Triton X-100

PD:

Parkinson’s disease

PEG:

Polyethylenglycol

RT:

Room temperature

SNpc:

Substantia nigra pars compacta

TH:

Tyrosine hydroxylase

WT:

Wild-type

4HNE:

4-Hydroxynonenal

References

  • Asanuma M, Miyazaki I, Higashi Y, Tanaka K, Haque ME, Fujita N, Ogawa N (2002) Aggravation of 6-hydroxydopamine-induced dopaminergic lesions in metallothionein-I and -II knock-out mouse brain. Neurosci Lett 327:61–65

    Article  CAS  PubMed  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Braithwaite EK, Mattie MD, Freedman JH (2010) Activation of metallothionein transcription by 4-hydroxynonenal. J Biochem Mol Toxicol 24:330–334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chung RS, Adlard PA, Dittmann J, Vickers JC, Chuah MI, West AK (2004) Neuron-glia communication: metallothionein expression is specifically up-regulated by astrocytes in response to neuronal injury. J Neurochem 88:454–461

    Article  CAS  PubMed  Google Scholar 

  • Dhillon AS, Tarbutton GL, Levin JL, Plotkin GM, Lowry LK, Nalbone JT, Shepherd S (2008) Pesticide/environmental exposures and Parkinson’s disease in East Texas. J Agromed 13:37–48

    Article  Google Scholar 

  • Drolet RE, Cannon JR, Montero L, Greenamyre JT (2009) Chronic rotenone exposure reproduces Parkinson’s disease gastrointestinal neuropathology. Neurobiol Dis 36:96–102

    Article  CAS  PubMed  Google Scholar 

  • Durrenberger PF, Filiou MD, Moran LB, Michael GJ, Novoselov S, Cheetham ME, Clark P, Pearce RK, Graeber MB (2009) DnaJB6 is present in the core of Lewy bodies and is highly up-regulated in parkinsonian astrocytes. J Neurosci Res 87:238–245

    Article  CAS  PubMed  Google Scholar 

  • Ebadi M, Brown-Borg H, El Refaey H, Singh BB, Garrett S, Shavali S, Sharma SK (2005) Metallothionein-mediated neuroprotection in genetically engineered mouse models of Parkinson’s disease. Brain Res Mol Brain Res 134:67–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fleming SM, Zhu C, Fernagut PO, Mehta A, DiCarlo CD, Seaman RL, Chesselet MF (2004) Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone. Exp Neurol 187:418–429

    Article  CAS  PubMed  Google Scholar 

  • Futakawa N, Kondoh M, Ueda S, Higashimoto M, Takiguchi M, Suzuki S, Sato M (2006) Involvement of oxidative stress in the synthesis of metallothionein induced by mitochondrial inhibitors. Biol Pharm Bull 29:2016–2020

    Article  CAS  PubMed  Google Scholar 

  • Greene JG, Noorian AR, Srinivasan S (2009) Delayed gastric emptying and enteric nervous system dysfunction in the rotenone model of Parkinson’s disease. Exp Neurol 218:154–161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heneka MT, Rodriguez JJ, Verkhratsky A (2010) Neuroglia in neurodegeneration. Brain Res Rev 63:189–211

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo J, García A, Oliva AM, Giralt M, Gasull T, González B, Milnerowicz H, Wood A, Bremner I (1994) Effect of zinc, copper and glucocorticoids on metallothionein levels of cultured neurons and astrocytes from rat brain. Chem Biol Interact 93:197–219

    Article  PubMed  Google Scholar 

  • Hubbard PS, Esiri MM, Reading M, McShane R, Nagy Z (2007) Alpha-synuclein pathology in the olfactory pathways of dementia patients. J Anat 211:117–124

    Article  PubMed Central  PubMed  Google Scholar 

  • Ishida Y, Nagai A, Kobayashi S, Kim SU (2006) Upregulation of protease-activated receptor-1 in astrocytes in Parkinson disease: astrocyte-mediated neuroprotection through increased levels of glutathione peroxidase. J Neuropathol Exp Neurol 65:66–77

    Article  CAS  PubMed  Google Scholar 

  • Jessen KR, Mirsky R (1983) Astrocyte-like glia in the peripheral nervous system: an immunohistochemical study of enteric glia. J Neurosci 3:2206–2218

    CAS  PubMed  Google Scholar 

  • Kondoh M, Inoue Y, Atagi S, Futakawa N, Higashimoto M, Sato M (2001) Specific induction of metallothionein synthesis by mitochondrial oxidative stress. Life Sci 69:2137–2146

    Article  CAS  PubMed  Google Scholar 

  • Masters BA, Kelly EJ, Quaife CJ, Brinster RL, Palmiter RD (1994) Targeted disruption of metallothionein I and II genes increases sensitivity to cadmium. Proc Natl Acad Sci USA 91:584–588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Michael GJ, Esmailzadeh S, Moran LB, Christian L, Pearce RK, Graeber MB (2011) Up-regulation of metallothionein gene expression in Parkinsonian astrocytes. Neurogenetics 12:295–305

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki I, Asanuma M, Hozumi H, Miyoshi K, Sogawa N (2007) Protective effects of metallothionein against dopamine quinone-induced dopaminergic neurotoxicity. FEBS Lett 581:5003–5008

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki I, Asanuma M, Kikkawa Y, Takeshima M, Murakami S, Miyoshi K, Sogawa N, Kita T (2011) Astrocyte-derived metallothionein protects dopaminergic neurons from dopamine quinone toxicity. Glia 59:435–451

    Article  PubMed  Google Scholar 

  • Miyazaki I, Asanuma M, Murakami S, Takeshima M, Torigoe N, Kitamura Y, Miyoshi K (2013) Targeting 5-HT receptors in astrocytes to protect dopaminergic neurons in parkinsonian models. Neurobiol Dis 59:244–256

    Article  CAS  PubMed  Google Scholar 

  • Orimo S, Uchihara T, Nakamura A, Mori F, Kakita A, Wakabayashi K, Takahashi H (2008) Axonal alpha-synuclein aggregates herald centripetal degeneration of cardiac sympathetic nerve in Parkinson’s disease. Brain 131:642–650

    Article  PubMed  Google Scholar 

  • Pan-Montojo F, Anichtchik O, Dening Y, Knels L, Pursche S, Jung R, Jackson S, Gille G, Spillantini MG, Reichmann H, Funk RH (2010) Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One 5:e8762

    Article  PubMed Central  PubMed  Google Scholar 

  • Pan-Montojo F, Schwarz M, Winkler C, Arnhold M, O’Sullivan GA, Pal A, Said J, Marsico G, Verbavatz JM, Rodrigo-Angulo M, Gille G, Funk RH, Reichmann H (2012) Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Sci Rep 2:898

    PubMed Central  PubMed  Google Scholar 

  • Parker WD Jr, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26:719–723

    Article  PubMed  Google Scholar 

  • Pedersen MO, Jensen R, Pedersen DS, Skjolding AD, Hempel C, Maretty L, Penkowa M (2009) Metallothionein-I + II in neuroprotection. BioFactors 35:315–325

    Article  CAS  PubMed  Google Scholar 

  • Reinecke F, Levanets O, Olivier Y, Louw R, Semete B, Grobler A, Hidalgo J, Smeitink J, Olckers A, Van der Westhuizen FH (2006) Metallothionein isoform 2A expression is inducible and protects against ROS-mediated cell death in rotenone-treated HeLa cells. Biochem J 395:405–415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Samantaray S, Knaryan VH, Guyton MK, Matzelle DD, Ray SK, Banik NL (2007) The parkinsonian neurotoxin rotenone activates calpain and caspase-3 leading to motoneuron degeneration in spinal cord of Lewis rats. Neuroscience 146:741–755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saravanan KS, Sindhu KM, Mohanakumar KP (2005) Acute intranigral infusion of rotenone in rats causes progressive biochemical lesions in the striatum similar to Parkinson’s disease. Brain Res 1049:147–155

    Article  CAS  PubMed  Google Scholar 

  • Savidge TC, Newman P, Pothoulakis C, Ruhl A, Neunlist M, Bourreille A, Hurst R, Sofroniew MV (2007) Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology 132:1344–1358

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1269

    Article  CAS  PubMed  Google Scholar 

  • Schwarz J, Weis S, Kraft E, Tatsch K, Bandmann O, Mehraein P, Vogl T, Oertel WH (1996) Signal changes on MRI and increases in reactive microgliosis, astrogliosis, and iron in the putamen of two patients with multiple system atrophy. J Neurol Neurosurg Psychiatry 60:98–101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23:10756–10764

    CAS  PubMed  Google Scholar 

  • Sofic E, Lange KW, Jellinger K, Riederer P (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 142:128–130

    Article  CAS  PubMed  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  CAS  PubMed  Google Scholar 

  • Stankovic RK, Chung RS, Penkowa M (2007) Metallothioneins I and II: neuroprotective significance during CNS pathology. Int J Biochem Cell Biol 39:484–489

    Article  CAS  PubMed  Google Scholar 

  • Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, Marras C, Bhudhikanok GS, Kasten M, Chade AR, Comyns K, Richards MB, Meng C, Priestley B, Fernandez HH, Cambi F, Umbach DM, Blair A, Sandler DP, Langston JW (2011) Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect 119:866–872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wakida K, Shimazawa M, Hozumi I, Satoh M, Nagase H, Inuzuka T, Hara H (2007) Neuroprotective effect of erythropoietin, and role of metallothionein-1 and -2, in permanent focal cerebral ischemia. Neuroscience 148:105–114

    Article  CAS  PubMed  Google Scholar 

  • Wong GF, Gray CS, Hassanein RS, Koller WC (1991) Environmental risk factors in siblings with Parkinson’s disease. Arch Neurol 48:287–289

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research (C) (KAKENHI #21591082, #22590934, #25461279) from Japan Society for the Promotion of Science, by Grant-in Aid for Scientific Research on Innovative Areas “Brain Environment” (KAKENHI #24111533) from the Japanese Ministry of Education, Culture, Sports, Science and Technology, and by a Research Grant from the Okayama Medical Foundation.

Conflict of interest

All authors have no actual or potential conflicts of interest, including financial, personal or other relationships with other people or organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Asanuma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murakami, S., Miyazaki, I., Sogawa, N. et al. Neuroprotective Effects of Metallothionein Against Rotenone-Induced Myenteric Neurodegeneration in Parkinsonian Mice. Neurotox Res 26, 285–298 (2014). https://doi.org/10.1007/s12640-014-9480-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-014-9480-1

Keywords

Navigation