Skip to main content

Advertisement

Log in

Up-regulation of metallothionein gene expression in Parkinsonian astrocytes

  • ORIGINAL ARTICLE
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

The role of glial cells in Parkinson’s disease (PD) is unclear. We have previously reported a striking up-regulation of DnaJB6 heat shock protein in PD substantia nigra astrocytes. Whole genome transcriptome analysis also indicated increased expression of metallothionein genes in substantia nigra and cortex of sporadic PD cases. Metallothioneins are metal-binding proteins in the CNS that are released by astrocytes and associated with neuroprotection. Metallothionein expression was investigated in 18 PD cases and 15 non-PD controls using quantitative real-time polymerase chain reaction (qRT-PCR), in situ hybridisation (ISH) and immunocytochemistry (ICC). We observed a strong increase in the expression of metallothioneins MT1E, MT1F, MT1G, MT1H, MT1M, MT1X and MT2A in both PD nigra and frontal cortex. Expression of LRP2 (megalin), the neuronal metallothionein receptor was also significantly increased. qRT-PCR confirmed metallothionein up-regulation. Astrocytes were found to be the main source of metallothioneins 1 and 2 based on ISH results, and this finding was confirmed by ICC. Our findings demonstrate metallothionein expression by reactive astrocytes in PD nigra and support a neuroprotective role for these cells. The traditional view that nigral astrocytes are non-reactive in PD is clearly incorrect. However, it is possible that astrocytes are themselves affected by the disease process which may explain their comparatively modest and previously overlooked response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mirza B, Hadberg H, Thomsen P, Moos T (2000) The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson's disease. Neuroscience 95:425–432

    Article  PubMed  CAS  Google Scholar 

  2. Durrenberger PF, Filiou MD, Moran LB, Michael GJ, Novoselov S, Cheetham ME, Clark P, Pearce RK, Graeber MB (2009) DnaJB6 is present in the core of Lewy bodies and is highly up-regulated in parkinsonian astrocytes. J Neurosci Res 87:238–245

    Article  PubMed  CAS  Google Scholar 

  3. Stankovic RK, Chung RS, Penkowa M (2007) Metallothioneins I and II: neuroprotective significance during CNS pathology. Int J Biochem Cell Biol 39:484–489

    Article  PubMed  CAS  Google Scholar 

  4. Cozzi B, Giacomello M, Zambenedetti P, Bolognin S, Rossipal E, Peruffo A, Zatta P (2010) Ontogenesis and migration of metallothionein I/II-containing glial cells in the human telencephalon during the second trimester. Brain Res 1327:16–23

    Article  PubMed  CAS  Google Scholar 

  5. Capdevila M, Atrian S (2011) Metallothionein protein evolution: a miniassay. J Biol Inorg Chem. doi:10.1007/s00775-011-0798-3

  6. Hozumi I, Yamada M, Uchida Y, Ozawa K, Takahashi H, Inuzuka T (2008) The expression of metallothioneins is diminished in the spinal cords of patients with sporadic ALS. Amyotroph Lateral Scler 9:294–298

    Article  PubMed  CAS  Google Scholar 

  7. Chung RS, Vickers JC, Chuah MI, West AK (2003) Metallothionein-IIA promotes initial neurite elongation and postinjury reactive neurite growth and facilitates healing after focal cortical brain injury. J Neurosci 23:3336–3342

    PubMed  CAS  Google Scholar 

  8. Miyazaki I, Asanuma M, Hozumi H, Miyoshi S (2007) Protective effects of metallothionein against dopamine quinone-induced dopaminergic neurotoxicity. FEBS Lett 581:5003–5008

    Article  PubMed  CAS  Google Scholar 

  9. Yamashita S, Okauchi M, Hua Y, Liu W, Keep R, Xi G (2008) Metallothionein and brain injury after intracerebral hemorrhage. Acta Neurochir Suppl 105:37–40

    Article  PubMed  CAS  Google Scholar 

  10. Leung Y, Pankhurst M, Dunlop S, Ray S, Dittmann J, Eaton E, Palumaa P, Sillard R, Chuah M, West A, Chung R (2010) Metallothionein induces a regenerative reactive astrocyte phenotype via JAK/STAT and RhoA signalling pathways. Exp Neurol 221:98–106

    Article  PubMed  CAS  Google Scholar 

  11. Penkowa M, Cáceres M, Borup R, Nielsen FC, Poulsen CB, Quintana A, Molinero A, Carrasco J, Florit S, Giralt M, Hidalgo J (2006) Novel roles for metallothionein-I + II (MT-I + II) in defense responses, neurogenesis, and tissue restoration after traumatic brain injury: insights from global gene expression profiling in wild-type and MT-I + II knockout mice. J Neurosci Res 84:1452–1474

    Article  PubMed  CAS  Google Scholar 

  12. Mikol J, Vital C, Wassef M, Chappuis P, Poupon J, Lecharpentier M, Woimant F (2005) Extensive cortico-subcortical lesions in Wilson's disease: clinico-pathological study of two cases. Acta Neuropathol 110:451–458

    Article  PubMed  Google Scholar 

  13. Wunderlich K, Leveillard T, Penkowa M, Zrenner E, Perez M (2010) Altered expression of metallothionein-I and -II and their receptor megalin in inherited photoreceptor degeneration. Investig Ophthalmol Vis Sci 51:4809–4820

    Article  Google Scholar 

  14. Vašák M, Meloni G (2011) Chemistry and biology of mammalian metallothioneins. J Biol Inorg Chem. doi:10.1007/s00775-011-0799-2

  15. Pedersen MØ, Jensen R, Pedersen DS, Skjolding AD, Hempel C, Maretty L, Penkowa M (2009) Metallothionein-I + II in neuroprotection. BioFactors (Oxford, England) 35:315–325

    Article  CAS  Google Scholar 

  16. Hozumi I, Suzuki J, Kanazawa H, Hara A, Saio M, Inuzuka T, Miyairi S, Naganuma A, Tohyama C (2008) Metallothionein-3 is expressed in the brain and various peripheral organs of the rat. Neurosci Lett 438:54–58

    Article  PubMed  CAS  Google Scholar 

  17. Lee S, Park M, Kim H, Koh J (2010) Metallothionein-3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions. Glia 58:1186–1196

    Article  PubMed  Google Scholar 

  18. Lee S, Koh J (2010) Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Mol Brain 3:30

    Article  PubMed  Google Scholar 

  19. Kim D, Kim EH, Kim C, Sun W, Kim HJ, Uhm CS, Park SH, Kim H (2003) Differential regulation of metallothionein-I, II, and III mRNA expression in the rat brain following kainic acid treatment. Neuroreport 14:679–682

    Article  PubMed  CAS  Google Scholar 

  20. Young JK, Garvey JS, Huang PC (1991) Glial immunoreactivity for metallothionein in the rat brain. Glia 4:602–610

    Article  PubMed  CAS  Google Scholar 

  21. Chung RS, Adlard PA, Dittmann J, Vickers JC, Chuah MI, West AK (2004) Neuron-glia communication: metallothionein expression is specifically up-regulated by astrocytes in response to neuronal injury. J Neurochem 88:454–461

    Article  PubMed  CAS  Google Scholar 

  22. Wakida SM, Hozumi I, Satoh NH, Inuzuka T, Hara H (2007) Neuroprotective effect of erythropoietin, and role of metallothionein-1 and -2, in permanent focal cerebral ischemia. Neuroscience 148:105–114

    Article  PubMed  CAS  Google Scholar 

  23. Beltramini M, Di Pisa C, Zambenedetti P, Wittkowski W, Mocchegiani E, Musicco M, Zatta P (2004) Zn and Cu alteration in connection with astrocyte metallothionein I/II overexpression in the mouse brain upon physical stress. Glia 47:30–34

    Article  PubMed  Google Scholar 

  24. Zambenedetti P, Giordano R, Zatta P (1998) Metallothioneins are highly expressed in astrocytes and microcapillaries in Alzheimer's disease. J Chem Neuroanat 15:21–26

    Article  PubMed  CAS  Google Scholar 

  25. Buniatian GH, Hartmann HJ, Traub P, Wiesinger H, Albinus M, Nagel W, Shoeman R, Mecke D, Weser U (2002) Glial fibrillary acidic protein-positive cells of the kidney are capable of raising a protective biochemical barrier similar to astrocytes: expression of metallothionein in podocytes. Anat Rec 267:296–306

    Article  PubMed  CAS  Google Scholar 

  26. Adachi T, Satoh M, Pramanik R, Kuroda S, Ishido M, Kunimoto M (2006) Region-dependent differences and alterations of protective thiol compound levels in cultured astrocytes and brain tissues. Biol Pharm Bull 29:1466–1469

    Article  PubMed  CAS  Google Scholar 

  27. Carrasco J, Adlard P, Cotman C, Quintana A, Penkowa M, Xu F, Van Nostrand W, Hidalgo J (2006) Metallothionein-I and -III expression in animal models of Alzheimer disease. Neuroscience 143:911–922

    Article  PubMed  CAS  Google Scholar 

  28. Hanlon J, Monks E, Hughes C, Weavers E, Rogers M (2002) Metallothionein in bovine spongiform encephalopathy. J Comp Pathol 127:280–289

    Article  PubMed  CAS  Google Scholar 

  29. Vorbrodt AW, Dobrogowska DH, Meeker HC, Carp RI (2006) Quantitative immunogold study of increased expression of metallothionein-I/II in the brain perivascular areas of diabetic scrapie-infected mice. J Mol Histol 37:143–151

    Article  PubMed  CAS  Google Scholar 

  30. Zatta P, Raso M, Zambenedetti P, Wittkowski W, Messori L, Piccioli F, Mauri PL, Beltramini M (2005) Copper and zinc dismetabolism in the mouse brain upon chronic cuprizone treatment. Cell Mol Life Sci 62:1502–1513

    Article  PubMed  CAS  Google Scholar 

  31. Zatta P, Zambenedetti P, Musicco M, Adorni F (2005) Metallothionein-I–II and GFAP positivity in the brains from frontotemporal dementia patients. J Alzheimers Dis 8:109–115

    PubMed  CAS  Google Scholar 

  32. Zambenedetti P, Schmitt HP, Zatta P (2002) Metallothionein I–II immunocytochemical reactivity in Binswanger's encephalopathy. J Alzheimers Dis 4:459–466

    PubMed  CAS  Google Scholar 

  33. Moran LB, Duke DC, Deprez M, Dexter DT, Pearce RK, Graeber MB (2006) Whole genome expression profiling of the medial and lateral substantia nigra in Parkinson's disease. Neurogenetics 7:1–11

    Article  PubMed  CAS  Google Scholar 

  34. Zhang Y, James M, Middleton FA, Davis RL (2005) Transcriptional analysis of multiple brain regions in Parkinson's disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms. Am J Med Genet B Neuropsychiatr Genet 137:5–16

    Google Scholar 

  35. Moran LB, Graeber MB (2008) Towards a pathway definition of Parkinson's disease: a complex disorder with links to cancer, diabetes and inflammation. Neurogenetics 9:1–13

    Article  PubMed  Google Scholar 

  36. Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, Eklund AC, Zhang-James Y, Kim PD, Hauser MA, Grünblatt E, Moran LB, Mandel SA, Riederer P, Miller RM, Federoff HJ, Wüllner U, Papapetropoulos S, Youdim MB, Cantuti-Castelvetri I, Young AB, Vance JM, Davis RL, Hedreen JC, Adler CH, Beach TG, Graeber MB, Middleton FA, Rochet JC, Scherzer CR, Global PD Gene Expression (GPEX) Consortium (2010) PGC-1α, a potential therapeutic target for early intervention in Parkinson's disease. Sci Transl Med 2:52ra73

    Article  PubMed  Google Scholar 

  37. Peirson SN, Butler JN, Foster RG (2003) Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 31:e73

    Article  PubMed  Google Scholar 

  38. Aschner M (1997) Astrocyte metallothioneins (MTs) and their neuroprotective role. Ann N Y Acad Sci 825:334–347

    Article  PubMed  CAS  Google Scholar 

  39. Fitzgerald M, Nairn P, Bartlett CA, Chung RS, West AK, Beazley LD (2007) Metallothionein-IIA promotes neurite growth via the megalin receptor. Exp Brain Res 183:171–180

    Article  PubMed  CAS  Google Scholar 

  40. Reinecke F, Levanets O, Olivier Y, Louw R, Semete B, Grobler A, Hidalgo J, Smeitink J, Olckers A, Van der Westhuizen FH (2006) Metallothionein isoform 2A expression is inducible and protects against ROS-mediated cell death in rotenone-treated HeLa cells. Biochem J 395:405–415

    Article  PubMed  CAS  Google Scholar 

  41. Futakawa N, Kondoh M, Ueda S, Higashimoto M, Takiguchi M, Suzuki S, Sato M (2006) Involvement of oxidative stress in the synthesis of metallothionein induced by mitochondrial inhibitors. Biol Pharm Bull 29:2016–2020

    Article  PubMed  CAS  Google Scholar 

  42. Dhanasekaran M, Albano CB, Pellet L, Karuppagounder SS, Uthayathas S, Suppiramaniam V, Brown-Borg H, Ebadi M (2008) Role of lipoamide dehydrogenase and metallothionein on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. Neurochem Res 33:980–984

    Article  PubMed  CAS  Google Scholar 

  43. Tanji K, Irie Y, Uchida Y, Mori F, Satoh K, Mizushima Y, Wakabayashi K (2003) Expression of metallothionein-III induced by hypoxia attenuates hypoxia-induced cell death in vitro. Brain Res 976:125–129

    Article  PubMed  CAS  Google Scholar 

  44. Hidalgo J, Penkowa M, Espejo C, Martínez-Cáceres EM, Carrasco J, Quintana A, Molinero A, Florit S, Giralt M, Ortega-Aznar A (2006) Expression of metallothionein-I, -II, and -III in Alzheimer disease and animal models of neuroinflammation. Exp Biol Med (Maywood, NJ) 231:1450–1458

    CAS  Google Scholar 

  45. Giralt M, Carrasco J, Penkowa M, Morcillo MA, Santamaria J, Campbell IL, Hidalgo J (2001) Astrocyte-targeted expression of interleukin-3 and interferon-alpha causes region-specific changes in metallothionein expression in the brain. Exp Neurol 168:334–346

    Article  PubMed  CAS  Google Scholar 

  46. Molinero A, Penkowa M, Hernández J, Camats J, Giralt M, Lago N, Carrasco J, Campbell IL, Hidalgo J (2003) Metallothionein-I overexpression decreases brain pathology in transgenic mice with astrocyte-targeted expression of interleukin-6. J Neuropathol Exp Neurol 62:315–328

    PubMed  CAS  Google Scholar 

  47. Penkowa M, Camats J, Giralt M, Molinero A, Hernández J, Carrasco J, Campbell IL, Hidalgo J (2003) Metallothionein-I overexpression alters brain inflammation and stimulates brain repair in transgenic mice with astrocyte-targeted interleukin-6 expression. Glia 42:287–306

    Article  PubMed  Google Scholar 

  48. Penkowa M, Poulsen C, Carrasco J, Hidalgo J (2002) M-CSF deficiency leads to reduced metallothioneins I and II expression and increased tissue damage in the brain stem after 6-aminonicotinamide treatment. Exp Neurol 176:308–321

    Article  PubMed  CAS  Google Scholar 

  49. Wiese L, Kurtzhals JA, Penkowa M (2006) Neuronal apoptosis, metallothionein expression and proinflammatory responses during cerebral malaria in mice. Exp Neurol 200:216–226

    Article  PubMed  CAS  Google Scholar 

  50. Cai L, Iskander S, Cherian MG, Hammond RR (2004) Zinc- or cadmium-pre-induced metallothionein protects human central nervous system cells and astrocytes from radiation-induced apoptosis. Toxicol Lett 146:217–226

    Article  PubMed  CAS  Google Scholar 

  51. Giralt M, Penkowa M, Lago N, Molinero A, Hidalgo J (2002) Metallothionein-1 + 2 protect the CNS after a focal brain injury. Exp Neurol 173:114–128

    Article  PubMed  CAS  Google Scholar 

  52. Penkowa M, Florit S, Giralt M, Quintana A, Molinero A, Carrasco J, Hidalgo J (2005) Metallothionein reduces central nervous system inflammation, neurodegeneration, and cell death following kainic acid-induced epileptic seizures. J Neurosci Res 79:522–534

    Article  PubMed  CAS  Google Scholar 

  53. Ebadi M, Sharma SK, Ghafourifar P, Brown-Borg H, El Refaey H (2005) Peroxynitrite in the pathogenesis of Parkinson's disease and the neuroprotective role of metallothioneins. Meth Enzymol 396:276–298

    Article  PubMed  CAS  Google Scholar 

  54. Ebadi M, Sharma S (2006) Metallothioneins 1 and 2 attenuate peroxynitrite-induced oxidative stress in Parkinson disease. Exp Biol Med (Maywood, NJ) 231:1576–1583

    CAS  Google Scholar 

  55. Acarin L, Peluffo H, Barbeito L, Castellano B, González B (2005) Astroglial nitration after postnatal excitotoxic damage: correlation with nitric oxide sources, cytoskeletal, apoptotic and antioxidant proteins. J Neurotrauma 22:189–200

    Article  PubMed  Google Scholar 

  56. Kooncumchoo P, Sharma S, Porter J, Govitrapong P, Ebadi M (2006) Coenzyme Q(10) provides neuroprotection in iron-induced apoptosis in dopaminergic neurons. J Mol Neurosci 28:125–141

    Article  PubMed  CAS  Google Scholar 

  57. Sharma SK, El Refaey H, Ebadi M (2006) Complex-1 activity and 18F-DOPA uptake in genetically engineered mouse model of Parkinson's disease and the neuroprotective role of coenzyme Q10. Brain Res Bull 70:22–32

    Article  PubMed  CAS  Google Scholar 

  58. Ransom BR, Kunis DM, Irwin I, Langston JW (1987) Astrocytes convert the parkinsonism inducing neurotoxin, MPTP, to its active metabolite, MPP+. Neurosci Lett 75:323–328

    Article  PubMed  CAS  Google Scholar 

  59. Ishida Y, Nagai A, Kobayashi S, Kim SU (2006) Upregulation of protease-activated receptor-1 in astrocytes in Parkinson disease: astrocyte-mediated neuroprotection through increased levels of glutathione peroxidase. J Neuropathol Exp Neurol 65:66–77

    Article  PubMed  CAS  Google Scholar 

  60. Solano RM, Casarejos MJ, Menéndez-Cuervo J, Rodriguez-Navarro JA, García de Yébenes J, Mena MA (2008) Glial dysfunction in parkin null mice: effects of aging. J Neurosci 28:598–611

    Article  PubMed  CAS  Google Scholar 

  61. Braak H, Sastre M, Del Tredici K (2007) Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson's disease. Acta Neuropathol 114:231–241

    Article  PubMed  CAS  Google Scholar 

  62. McGeer PL, McGeer EG (2008) Glial reactions in Parkinson's disease. Mov Disord 23:474–483

    Article  PubMed  Google Scholar 

  63. Duke DC, Moran LB, Kalaitzakis ME, Deprez M, Dexter DT, Pearce RK, Graeber MB (2006) Transcriptome analysis reveals link between proteasomal and mitochondrial pathways in Parkinson's disease. Neurogenetics 7:139–148

    Article  PubMed  CAS  Google Scholar 

  64. Chung RS, Penkowa M, Dittmann J, King CE, Bartlett C, Asmussen JW, Hidalgo J, Carrasco J, Leung YK, Walker AK, Fung SJ, Dunlop SA, Fitzgerald M, Beazley LD, Chuah MI, Vickers JC, West AK (2008) Redefining the role of metallothionein within the injured brain: extracellular metallothioneins play an important role in the astrocyte–neuron response to injury. J Biol Chem 283:15349–15358

    Article  PubMed  CAS  Google Scholar 

  65. Potter E, Cheng Y, Knight J, Gordish-Dressman H, Natale J (2007) Metallothionein I and II attenuate the thalamic microglial response following traumatic axotomy in the immature brain. J Neurotrauma 24:28–42

    Article  PubMed  Google Scholar 

  66. Lederer CW, Torrisi A, Pantelidou M, Santama N, Cavallaro S (2007) Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis. BMC Genomics 8:26

    Article  PubMed  Google Scholar 

  67. Shelton RC, Claiborne J, Sidoryk-Wegrzynowicz M, Reddy R, Aschner M, Lewis DA, Mirnics K (2011) Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol Psychiatry 16(7):751–762

    Article  PubMed  CAS  Google Scholar 

  68. Hahn Y, Lee B (2006) Human-specific nonsense mutations identified by genome sequence comparisons. Hum Genet 119(1–2):169–178

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The laboratory work was funded by the UK Parkinson’s Disease Society. Tissue samples were supplied by the UK Parkinson’s Disease Society Tissue Bank at Charing Cross Hospital, Imperial College, London, funded by the Parkinson’s Disease Society of the United Kingdom, registered charity 948776. This study had research ethics committee approval. We express our deepest appreciation to the donors and their families for donating human brain tissue for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel B. Graeber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michael, G.J., Esmailzadeh, S., Moran, L.B. et al. Up-regulation of metallothionein gene expression in Parkinsonian astrocytes. Neurogenetics 12, 295–305 (2011). https://doi.org/10.1007/s10048-011-0294-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-011-0294-5

Keywords

Navigation