Skip to main content

Advertisement

Log in

Methamphetamine Induces Low Levels of Neurogenesis in Striatal Neuron Subpopulations and Differential Motor Performance

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Methamphetamine (METH) causes significant loss of some striatal projection and interneurons. Recently, our group reported on the proliferation of new cells 36 h after METH and some of the new cells survive up to 12 weeks (Tulloch et al., Neuroscience 193:162–169, 2011b). We hypothesized that some of these cells will differentiate and express striatal neuronal phenotypes. To test this hypothesis, mice were injected with METH (30 mg/kg) followed by a single BrdU injection (100 mg/kg) 36 h after METH. One week after METH, a population of BrdU-positive cells expressed the neuronal progenitor markers nestin (18 %) and β-III-tubulin (30 %). At 8 weeks, 14 % of the BrdU-positive cells were also positive for the mature neuron marker, NeuN. At 12 weeks, approximately 7 % of the BrdU-positive cells co-labeled with ChAT, PV or DARPP-32. We measured motor coordination on the rotarod and psychomotor activity in the open-field. At 12 weeks, METH–injected mice exhibited delayed motor coordination deficits. In contrast, open-field tests revealed that METH-injected mice compared to saline mice displayed psychomotor deficits at 2.5 days but not at 2 or more weeks after METH. Taken together, these data demonstrate that some of the new cells generated in the striatum differentiate and express the phenotypes of striatal neurons. However, the proportion of these new neurons is low compared to the proportion that died by apoptosis 24 h after the METH injection. More studies are needed to determine if the new neurons are functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BrdU:

5-Bromo-2′-deoxyuridine

ICR:

Institute for Cancer Research

Ip:

Intraperitoneal

METH:

(+)-Methamphetamine hydrochloride

PBS:

Phosphate-buffered saline, pH 7.4

IB4:

Isolectin B4

NeuN:

Neuron nuclear protein

ChAT:

Choline acetyltransferase

DA:

Dopamine

DARPP-32:

Dopamine and cAMP-regulated phosphoprotein of 32 kDa

PV:

Parvalbumin

SVZ:

Sub-ventricular zone

References

  • Achat-Mendes C, Ali SF, Itzhak Y (2005) Differential effects of amphetamines-induced neurotoxicity on appetitive and aversive Pavlovian conditioning in mice. Neuropsychopharmacology 30:1128–1137

    Article  CAS  PubMed  Google Scholar 

  • Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–967

    Article  CAS  PubMed  Google Scholar 

  • Bédard A, Cossette M, Lévesque M, Parent A (2002) Proliferating cells can differentiate into neurons in the striatum of normal adult monkey. Neurosci Lett 328:213–216

    Article  PubMed  Google Scholar 

  • Bédard A, Gavel C, Parent A (2006) Chemical characterization of newly generated neurons in the striatum of adult primates. Exptl Brain Res 170:501–512

    Article  Google Scholar 

  • Boger HA, Middaugh LD, Granholm AC, McGinty JF (2009) Minocycline restores striatal tyrosine hydroxylase in GDNF heterozygous mice but not in methamphetamine-treated mice. Neurobiol Disease 33:459–466

    Article  CAS  Google Scholar 

  • Bowyer JF, Robinson B, Ali S, Schmued LC (2008) Neurotoxic-related changes in tyrosine hydroxylase, microglia, myelin, and the blood-brain barrier in the caudate-putamen from acute methamphetamine exposure. Synapse 62:193–204

    Article  CAS  PubMed  Google Scholar 

  • Brooks SP, Dunnett SB (2009) Tests to assess motor phenotype in mice: a user’s guide. Nat Rev Neurosci 10:519–529

    Article  CAS  PubMed  Google Scholar 

  • Canales JJ (2013) Deficient plasticity in the hippocampus and the spiral of addiction: focus on adult neurogenesis. Curr Topics Behav Neurosci 15:293–312

    Article  Google Scholar 

  • Chang L, Cloak C, Patterson K, Grob C, Miller E, Ernst T (2005) Enlarged striatum in abstinent methamphetamine abusers: a possible compensatory response. Biol Psychiatry 57:967–974

    Article  CAS  PubMed  Google Scholar 

  • Daberkow DP, Riedy MD, Kesner RP, Keefe KA (2007) Arc mRNA induction in striatal efferent neurons associated with response learning. Eur J Neurosci 26:228–241

    Article  CAS  PubMed  Google Scholar 

  • Daberkow DP, Riedy MD, Kesner RP, Keefe KA (2008) Effect of methamphetamine neurotoxicity on learning-induced arc mRNA expression in identified striatal efferent neurons. Neurotox Res 14:307–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Denenberg VH (1969) Open-field behavior in the rat: what does it mean? Ann NY Acad Sci 159:852–859

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Wang Y, Chou J, Cadet JL (2001) Methamphetamine causes widespread apoptosis in the mouse brain: evidence from using an improved TUNEL histochemical method. Brain Res Mol Brain Res 93:64–69

    Article  CAS  PubMed  Google Scholar 

  • DiCaudo C, Riverol M, Mundiñano IC, Ordoñez C, Hernández M, Marcilla I, Luquin MR (2012) Chronic levodopa administration followed by a washout period increased number and induced phenotypic changes in striatal dopaminergic cells in MPTP-monkeys. PlosOne 7(11):e50842

    Article  CAS  Google Scholar 

  • Eisch AJ, Marshall JF (1998) Methamphetamine neurotoxicity: dissociation of striatal dopamine terminal damage from parietal cortical cell body injury. Synapse 30:433–445

    Article  CAS  PubMed  Google Scholar 

  • Ernst T, Chang L, Leonido-Yee M, Speck O (2000) Evidence for long-term neurotoxicity associated with methamphetamine abuse: a 1H MRS study. Neurology 54:1344–1349

    Article  CAS  PubMed  Google Scholar 

  • Friedman SD, Castañeda E, Hodge GK (1998) Long-term monoamine depletion, differential recovery, and subtle behavioral impairment following methamphetamine-induced neurotoxicity. Pharmacol Biochem Behav 61:35–44

    Article  CAS  PubMed  Google Scholar 

  • Haelewyn B, Freret T, Pacary E, Schumann-Bard P, Boulouard M, Bernaudin M, Bouët V (2007) Long-term evaluation of sensorimotor and amnesic behaviour following striatal NMDA-induced unilateral excitotoxic lesion in the mouse. Behav Brain Res 178:235–243

    Article  CAS  PubMed  Google Scholar 

  • Hall DA, Stanis JJ, Marquez AH, Gulley JM (2008) A comparison of amphetamine- and methamphetamine-induced locomotor activity in rats: evidence for qualitative differences in behavior. Psychopharmacology 195:469–478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ignarro RC, Vieira AS, Sartori CR, Langone F, Rogerio F, Parada CA (2013) JAK2 inhibition is neuroprotective and reduces astrogliosis after quinolinic acid striatal lesion in adult mice. J Chem Neuroanat 48–49:14–22

    Article  PubMed  Google Scholar 

  • Izquierdo A, Belcher AM, Scott L, Cazares VA, Chen J, O’Dell SJ, Malvaez M, Wu T, Marshall JF (2010) Reversal-specific learning impairments after a binge regimen of methamphetamine in rats: possible involvement of striatal dopamine. Neuropsychopharmacology 35:505–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones BJ, Roberts DJ (1968a) A rotarod suitable for quantitative measurements of motor incoordination in naive mice. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 259:211

    Article  CAS  PubMed  Google Scholar 

  • Jones BJ, Roberts DJ (1968b) The quantitative measurement of motor inco-ordination in naive mice using an accelerating rotarod. J Pharm Pharmacol 20:302–304

    Article  CAS  PubMed  Google Scholar 

  • Kataoka Y, Kalanithi PS, Grantz H, Schwartz ML, Saper C, Leckman JF, Vaccarino FM (2010) Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J Comp Neurol 518:277–291

    Article  PubMed Central  PubMed  Google Scholar 

  • Kay JN, Blum M (2000) Differential response of ventral midbrain and striatal progenitor cells to lesions of the nigrostriatal dopaminergic projection. Dev Neurosci 22:56–67

    Article  CAS  PubMed  Google Scholar 

  • Kojima T, Hirota Y, Ema M, Takahashi S, Miyoshi I, Okano H, Sawamoto K (2010) Subventricualr zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells 28:545–554

    PubMed  Google Scholar 

  • Krasnova IN, Cadet JL (2009) Methamphetamine toxicity and messengers of death. Brain Res Rev 60:379–407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krasnova IN, Hodges AB, Ladenheim B, Rhoades R, Phillip CG, Cesena A, Ivanova E, Hohmann CF, Cadet JL (2009) Methamphetamine treatment causes delayed decrease in novelty-induced locomotor activity in mice. Neurosci Res 65:160–165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuhn HG, Palmer TD, Fuchs E (2001) Adult neurogenesis: a compensatory mechanism for neuronal damage. Eur Arch Psychiatry Clin Neurosci 251:152–158

    Article  CAS  PubMed  Google Scholar 

  • Lloyd SA, Balest ZR, Corotto FS, Smeyne RJ (2010) Cocaine selectively increases proliferation in the adult murine hippocampus. Neurosci Lett 485(2):112–116

    Google Scholar 

  • Luzzati F, De Marchis S, Parlato R, Gribaudo S, Schutz G et al (2011) New striatal neurons in a mouse model of progressive striatal degeneration are generated in both the subventricular zone and the striatal parenchyma. PLoS One 6:e25088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mandyam CD, Wee S, Crawford EF, Eisch AJ, Richardson HN, Koob GF (2008) Varied access to intravenous methamphetamine self-administration differentially alters adult hippocampal neurogenesis. Biol Psychiatry 64:958–965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marrone MC, Marinelli S, Biamonte F, Keller F, Sgobio CA, Ammassari-Teule M, Bernardi G, Mercuri NB (2006) Altered cortico-striatal synaptic plasticity and related behavioural impairments in reeler mice. Eur J Neurosci 24:2061–2070

    Article  PubMed  Google Scholar 

  • McCann UD, Wong DF, Yokoi F, Villemagne V, Dannals RF, Ricaurte GA (1998) Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35,428. J Neurosci 18:8417–8422

    CAS  PubMed  Google Scholar 

  • Parent JM (2003) Injury-induced neurogenesis in the adult mammalian brain. Neuroscientist 9(4):261–272

    Article  PubMed  Google Scholar 

  • Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52:802–813

    Article  PubMed  Google Scholar 

  • Peterson DA (1999) Quantitative histology using confocal microscopy: implementation of unbiased stereology procedures. Methods 18:493–507

    Article  CAS  PubMed  Google Scholar 

  • Pu C, Broening HW, Vorhees CV (1996) Effect of methamphetamine on glutamate-positive neurons in the adult and developing rat somatosensory cortex. Synapse 23:328–334

    Article  CAS  PubMed  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  CAS  PubMed  Google Scholar 

  • Ricaurte GA, Schuster CR, Seiden LS (1980) Long-term effects of repeated methylamphetamine administration on dopamine and serotonin neurons in the rat brain: a regional study. Brain Res 193:153–163

    Article  CAS  PubMed  Google Scholar 

  • Salo R, Irsu S, Buonocore MH, Leamon MH, Carter C (2009) Impaired prefrontal cortical function and disrupted adaptive cognitive control in methamphetamine abusers: a functional magnetic resonance imaging study. Biol Psychiatry 65:706–709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt CJ, Gibb JW (1985) Role of the dopamine uptake carrier in the neurochemical response to methamphetamine: effects of amfonelic acid. Eur J Pharmacol 109:73–80

    Article  CAS  PubMed  Google Scholar 

  • Seiden LS, MacPhail RC, Oglesby MW (1975) Catecholamines and drug–behavior interactions. Fed Proc 34:1823–1831

    CAS  PubMed  Google Scholar 

  • Sudai E, Croitoru O, Shaldubina A, Abraham L, Gispan I, Flaumenhaft Y, Roth-Deri I, Kinor N, Aharoni S, Ben-Tzion M, Yadid G (2011) High cocaine dosage decreases neurogenesis in the hippocampus and impairs working memory. Addict Biol 16(2):251–260

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Zhang QW, Xu M, Guo JJ, Shen SW, Wang YQ, Sun FY (2012) New striatal neurons form projections to substantia nigra in adult rat brain after stroke. Neurobiol Dis 45:601–609

    Article  PubMed  Google Scholar 

  • Supeno NE, Pati S, Hadi RA, Ghani AR, Mustafa Z, Abdullah JM, Idris FM, Han X, Jaafar H (2013) IGF-1 acts as controlling switch for long-term proliferation and maintenance of EGF/FGF-responsive striatal neural stem cells. Int J Med Sci 10:522–531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teuchert-Noodt G, Dawirs RR, Hildebrandt K (2000) Adult treatment with methamphetamine transiently decreases dentate granule cell proliferation in the gerbil hippocampus. J Neural Trans 107:133–143

    Article  CAS  Google Scholar 

  • Tulloch IK, Afanador L, Zhu J, Angulo JA (2011a) Methamphetamine induces striatal cell death followed by the generation of new cells and a second round of cell death in mice. Curr Neuropharmacol 9:79–83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tulloch I, Afanador L, Mexhitaj I, Ghazaryan N, Garzagongora AG, Angulo JA (2011b) A single high dose of methamphetamine induces apoptotic and necrotic striatal cell loss lasting up to 3 months in mice. Neuroscience 193:162–169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • United Nations Office on Drugs and Crime (2008) World drug report annual overview 2008: UNDC research and analysis 2008. http://www.unodc.org/documents/wdr/WDR_2008/WDR2008_Overview

  • Van Kampen JM, Eckman CB (2006) Dopamine D3 receptor agonist delivery to a model of Parkinson’s disease restores the nigrostriatal pathway and improves locomotor behavior. J Neurosci 26:7272–7280

    Article  PubMed  Google Scholar 

  • Van Kampen JM, Robertson HA (2005) Possible role for dopamine D3 receptor stimulation in the induction of neurogenesis in the adult rat substantia nigra. Neuroscience 136:381–386

    Article  PubMed  Google Scholar 

  • Van Kampen JM, Hagg T, Robertson HA (2004) Induction of neurogenesis in the adult rat subventricular zone and neostriatum following dopamine D3 receptor stimulation. Eur J Neurosci 19:2377–2387

    Article  PubMed  Google Scholar 

  • Venkatesan A, Uzasci L, Chen Z, Rajbhandari L, Anderson C, Lee MH, Bianchet MA, Cotter R, Song H, Nath A (2011) Impairment of adult hippocampal neural progenitor proliferation by methamphetamine: role for nitrotyrosination. Mol Brain 27(4):28

    Article  Google Scholar 

  • Volkow ND, Chang L, Wang GJ, Fowler JS, Leonido-Yee M, Franceschi D, Sedler MJ, Gatley SJ, Hitzemann R, Ding YS, Logan J, Wong C, Miller EN (2001) Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 158:377–382

    Article  CAS  PubMed  Google Scholar 

  • Whimbey AE, Denenberg VH (1967) Two independent behavioral dimensions in open-field performance. J Comp Physiol Psychol 63:500–504

    Article  CAS  PubMed  Google Scholar 

  • Widespread Urrea C, Castellanos DA, Sagen J, Tsoufas P, Bramlett HM, Dietrich WD (2007) Widespread cellular proliferation and focal neurogenesis after traumatic brain injury in the rat. Restor Neurol Neurosci 25(1):65–76

    Google Scholar 

  • Wilson JM, Kalasinsky KS, Levey AI, Bergeron C, Reiber G, Anthony RM, Schmunk GA, Shannak K, Haycock JW, Kish SJ (1996) Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 2:699–703

    Article  CAS  PubMed  Google Scholar 

  • Yamashita T, Ninomiya M, Hernández Acosta P, García-Verdugo JM, Sunabori T, Sakaguchi M, Adachi K, Kojima T, Hirota Y, Kawase T, Araki N, Abe K, Okano H, Sawamoto K (2006) Subventricular zone neuroblasts migrate and differentiate into mature neurons in the post-stroke striatum. J Neurosci 26:6627–6636

    Article  CAS  PubMed  Google Scholar 

  • Zhu JPQ, Xu W, Angulo JA (2005) Disparity in the temporal appearance of methamphetamine-induced apoptosis and depletion of dopamine terminal markers in the striatum of mice. Brain Res 1049:171–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu JPQ, Xu W, Angulo JA (2006) Methamphetamine-induced cell death: selective vulnerability in neuronal subpopulations of the striatum in mice. Neuroscience 140:607–622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by R01 DA020142 from the National Institute on Drug Abuse to JAA. Support for infrastructure came from a grant from the National Center for Research Resources (G12 RR003037) and the National Institute on Minority Health Disparities (8 G12 MD007599) awarded to Hunter College by the NIH. We would like to thank Drs. Cheryl Harding and Peter Serrano for use of their behavior testing equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Angulo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tulloch, I.K., Afanador, L., Baker, L. et al. Methamphetamine Induces Low Levels of Neurogenesis in Striatal Neuron Subpopulations and Differential Motor Performance. Neurotox Res 26, 115–129 (2014). https://doi.org/10.1007/s12640-014-9456-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-014-9456-1

Keywords

Navigation