Skip to main content
Log in

The Role of Glutamate Dehydrogenase in Mammalian Ammonia Metabolism

  • Review Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Glutamate dehydrogenase (GDH) catalyzes the reversible inter-conversion of glutamate to α-ketoglutarate and ammonia. High levels of GDH activity is found in mammalian liver, kidney, brain, and pancreas. In the liver, GDH reaction appears to be close-to-equilibrium, providing the appropriate ratio of ammonia and amino acids for urea synthesis in periportal hepatocytes. In addition, GDH produces glutamate for glutamine synthesis in a small rim of pericentral hepatocytes. Hence, hepatic GDH can be either a source for ammonia or an ammonia scavenger. In the kidney, GDH function produces ammonia from glutamate to control acidosis. In the human, the presence of two differentially regulated isoforms (hGDH1 and hGDH2) suggests a complex role for GDH in ammonia homeostasis. Whereas hGDH1 is sensitive to GTP inhibition, hGDH2 has dissociated its function from GTP control. Furthermore, hGDH2 shows a lower optimal pH than hGDH1. The hGDH2 enzyme is selectively expressed in human astrocytes and Sertoli cells, probably facilitating metabolic recycling processes essential for their supportive role. Here, we report that hGDH2 is also expressed in the epithelial cells lining the convoluted tubules of the renal cortex. As hGDH2 functions more efficiently under acidotic conditions without the operation of the GTP energy switch, its presence in the kidney may increase the efficacy of the organ to maintain acid base equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GDH:

Glutamate dehydrogenase

PDG:

Phosphate dependent glutaminase

hGDH1:

Human glutamate dehydrogenase encoded by the GLUD1 gene

hGDH2:

Human glutamate dehydrogenase encoded by the GLUD2 gene

HI/HA:

Hyperinsulinism/hyperammonemia

TCA cycle:

Tricarboxylic acid cycle

References

  • Alpern RJ (1995) Trafe-offs in the adaptation to acidosis. Kidney Int 47:1205–1215

    Article  PubMed  CAS  Google Scholar 

  • Aoki C, Milner T, Berger S, Sheu K, Blass J, Pickel V (1987) Glial glutamate dehydrogenase: ultrastructural localization and regional distribution in relation to the mitochondrial enzyme, cytochrome oxidase. J Neurosci Res 18:305–318

    Article  PubMed  CAS  Google Scholar 

  • Bailey J, Bell ET, Bell JE (1982) Regulation of bovine glutamate dehydrogenase. The effects of pH and ADP. J Biol Chem 257(10):5579–5583

    PubMed  CAS  Google Scholar 

  • Boon L, Geerts WJ, Jonker A, Lamers WH, Van Noorden CJ (1999) High protein diet induces pericentral glutamate dehydrogenase and ornithine aminotransferase to provide sufficient glutamate for pericentral detoxification of ammonia in rat liver lobules. Histochem Cell Biol 111(6):445–452

    Article  PubMed  CAS  Google Scholar 

  • Borompokas N, Papachatzaki MM, Kanavouras K, Mastorodemos V, Zaganas I, Spanaki C, Plaitakis A (2010) Estrogen modification of human glutamate dehydrogenases is linked to enzyme activation state. J Biol Chem 285(41):31380–31387

    Article  PubMed  CAS  Google Scholar 

  • Bosman DK, Deutz NE, De Graaf AA, vd Hulst RW, Van Eijk HM, Bovée WM, Maas MA, Jörning GG, Chamuleau RA (1990) Changes in brain metabolism during hyperammonemia and acute liver failure: results of a comparative 1H-NMR spectroscopy and biochemical investigation. Hepatology 12(2):281–290

    Article  PubMed  CAS  Google Scholar 

  • Bouvier M, Szatkowski M, Amato A, Attwell D (1992) The glial cell glutamate uptake carrier countertransports pH-changing anions. Nature 360:471–474

    Article  PubMed  CAS  Google Scholar 

  • Brosnan ME, Brosnan JT (2009) Hepatic glutamate metabolism: a tale of 2 hepatocytes. Am J Clin Nutr 90(3):57S–861S

    Article  Google Scholar 

  • Brosnan JT, Brosnan ME, Charron R, Nissim I (1996) A mass isotopomer study of urea and glutamine synthesis from 15 N-labeled ammonia in the perfused rat liver. J Biol Chem 271:16199–16207

    Article  PubMed  CAS  Google Scholar 

  • Burki F, Kaessmann H (2004) Birth and adaptive evolution of a hominoid gene that supports high neurotransmitter flux. Nat Genet 36:1061–1063

    Article  PubMed  CAS  Google Scholar 

  • Butterworth RF (2002) Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab Brain Dis 17:221–227

    Article  PubMed  CAS  Google Scholar 

  • Colon A, Plaitakis A, Perakis A, Berl S, Clarke D (1986) Purification and characterization of a soluble and a particulate glutamate dehydrogenase from rat brain. J Neurochem 46:1811–1819

    Article  PubMed  CAS  Google Scholar 

  • Cooper A (2004) The role of glutamine transaminase K (GTK) in sulfur and α-keto acid metabolism in the brain, and in the possible bioactivation of neurotoxicants. Neurochem Int 44:557–577

    Google Scholar 

  • Cooper AJ (2011) 13 N as a tracer for studying glutamate metabolism. Neurochem Int 59(4):456–464

    Article  PubMed  CAS  Google Scholar 

  • Cooper AJ, McDonald JM, Gelbard GS, Gledhill RF, Duffy TE (1979) The metabolic fate of 13 N-labeled ammonia in rat brain. J Biol Chem 254:4982–4992

    PubMed  CAS  Google Scholar 

  • Cooper AJ, Mora SN, Cruz NF, Gelbard AS (1985) Cerebral ammonia metabolism in hyperammonemic rats. J Neurochem 44:1716–1723

    Article  PubMed  CAS  Google Scholar 

  • Cooper AJ, Nieves E, Coleman, Filc-DeRicco S, Gelbard AS (1987) Short-term metabolic fate of [13N] ammonia in rat liver in vivo. J Biol Chem 262:1073–1080

    PubMed  CAS  Google Scholar 

  • Cooper AJ, Nieves E, Rosenspire KC, Filc-DeRicco S, Gelbard AS, Brusilow SW (1988) Short-term metabolic fate of 13N-labeled glutamate, alanine, and glutamine(amide) in rat liver. J Biol Chem 263:12268–12273

    PubMed  CAS  Google Scholar 

  • Couée I, Tipton KF (1990) The inhibition of glutamate dehydrogenase by some antipsychotic drugs. Biochem Pharmacol 39(5):827–832

    Article  PubMed  Google Scholar 

  • di Prisco G, Casola L (1975) Detection of structural differences between nuclear and mitochondrial glutamate dehydrogenases by the use of immunoadsorbents. Biochemistry 14(21):4679–4683

    Article  PubMed  CAS  Google Scholar 

  • Dieter H, Koberstein R, Sund H (1981) Studies of glutamate dehydrogenase. The interaction of ADP, GTP, and NADPH in complexes with glutamate dehydrogenase. Eur J Biochem 115:217–226

    Article  PubMed  CAS  Google Scholar 

  • Fahien LA, Kmiotek E (1981) Regulation of glutamate dehydrogenase by palmitoyl-coenzyme. Arch Biochem Biophys 212(1):247–253

    Article  PubMed  CAS  Google Scholar 

  • Fahien LA, Shemisa O (1970) Effects of chlorpromazine on glutamate dehydrogenase. Mol Pharmacol 6(2):156–163

    PubMed  CAS  Google Scholar 

  • Gebhardt R, Mecke D (1983) Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture. EMBO J 2:567–570

    PubMed  CAS  Google Scholar 

  • Geerts WJ, Verburg M, Jonker A, Das AT, Boon L, Charles R, Lamers WH, Van Noorden CJ (1996) Gender-dependent regulation of glutamate dehydrogenase expression in periportal and pericentral zones of rat liver lobules. J Histochem Cytochem 44(10):1153–1159

    Article  PubMed  CAS  Google Scholar 

  • Halestrap AP, Brosnan JT (2008) From metabolic cycles to compartmentation: another first for Krebs. Biochemist 30:24–28

    CAS  Google Scholar 

  • Halperin Ml, Kamel KS, Ethier JH, Stinebaugh BJ, Jungas RL (1992) Biochemistry and physiology of ammonium excretion. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology, 2nd edn. Raven Press Ltd, New York, pp 2645–2679

    Google Scholar 

  • Hudson R, Daniel R (1993) l-glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol B 106:767–792

    Article  PubMed  CAS  Google Scholar 

  • Islam MM, Nautiyal M, Wynn RM, Mobley JA, Chuang DT, Hutson SM (2010) Branched-chain amino acid metabolon: interaction of glutamate dehydrogenase with the mitochondrial branched-chain aminotransferase (BCATm). J Biol Chem 285:265–276

    Article  PubMed  CAS  Google Scholar 

  • Kanamori K, Ross BD, Chung JC, Kuo EL (1996) Severity of hyperammonemic encephalopathy correlates with brain ammonia level and saturation of glutamine synthetase in vivo. J Neurochem 67(4):1584–1594

    Article  PubMed  CAS  Google Scholar 

  • Kanavouras K, Mastorodemos V, Borompokas N, Spanaki C, Plaitakis A (2007) Properties and molecular evolution of human GLUD2 (neural and testicular tissue-specific) glutamate dehydrogenase. J Neurosci Res 85:3398–3406

    Article  PubMed  CAS  Google Scholar 

  • Lee W, Shin S, Cho S, Park J (1999) Purification and characterization of glutamate dehydrogenase as another isoprotein binding to the membrane of rough endoplasmic reticulum. J Cell Biochem 76:244–253

    Article  PubMed  CAS  Google Scholar 

  • Leke R, Bak LK, Schousboe A, Waagepetersen HS (2008) Demonstration of neuron-glia transfer of precursors for GABA biosynthesis in a co-culture system of dissociated mouse cerebral cortex. Neurochem Res 33:2629–2635

    Article  PubMed  CAS  Google Scholar 

  • Leke R, Bak LK, Anker M, Melø TM, Sørensen M, Keiding S, Vilstrup H, Ott P, Portela LV, Sonnewald U, Schousboe A, Waagepetersen HS (2011) Detoxification of ammonia in mouse cortical GABAergic cell cultures increases neuronal oxidative metabolism and reveals an emerging role for release of glucose-derived alanine. Neurotox Res 19:496–510

    Article  PubMed  CAS  Google Scholar 

  • Li M, Li C, Allen A, Stanley CA, Smith TJ (2011) The structure and allosteric regulation of glutamate dehydrogenase. Neurochem Int 59(4):445–455

    Article  PubMed  CAS  Google Scholar 

  • Lockwood AH, McDonald JM, Reiman RE, Gelbard AS, Laughlin JS, Duffy TE, Plam F (1979a) The dynamics of ammonia metabolism in man. Effect of liver disease and hyperammonemia. J Clin Invest 63:449–460

    Article  PubMed  CAS  Google Scholar 

  • Lockwood AH, McDonald JM, Reiman RE, Gelbard AS, Laughlin JS, Duffy TE, Plum F (1979b) The dynamics of ammonia metabolism in man. Effects of liver disease and hyperammonemia. J Clin Invest 63(3):449–460

    Article  PubMed  CAS  Google Scholar 

  • Lockwood AH, Finn RD, Campbell JA, Richman TB (1980) Factors that affect the uptake of ammonia by the brain: the blood–brain pH gradient. Brain Res 181:259–266

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein JM (1972) Ammonia production in muscle and other tissues; the purine nucleotide cycle. Physiol Rev 52:382–414

    CAS  Google Scholar 

  • Lowry M, Ross BD (1980) Activation of oxoglutarate dehydrogenase in the kidney in response to acute acidosis. Biochem J 190:771–780

    PubMed  CAS  Google Scholar 

  • Maly IP, Sasse D (1991) Microquantitative analysis of the intra-acinar profiles of glutamate dehydrogenase in rat liver. J Histochem Cytochem 39(8):1121–1124

    Article  PubMed  CAS  Google Scholar 

  • Mastorodemos V, Zaganas I, Spanaki C, Bessa M, Plaitakis A (2005) Molecular basis of human glutamate dehydrogenase regulation under changing energy demands. J Neurosci Res 79:65–73

    Article  PubMed  CAS  Google Scholar 

  • Mastorodemos V, Kotzamani D, Zaganas I, Arianoglou G, Latsoudis H, Plaitakis A (2009) Human GLUD1 and GLUD2 glutamate dehydrogenase localize to mitochondria and endoplasmic reticulum. Biochem Cell Biol 87:505–516

    Article  PubMed  CAS  Google Scholar 

  • Mavrothalassitis G, Tzimagiorgis G, Mitsialis A, Zannis V, Plaitakis A, Papamatheakis J, Moschonas N (1988) Isolation and characterization of cDNA clones encoding human liver glutamate dehydrogenase: evidence for a small gene family. Proc Natl Acad Sci USA 85:3494–3498

    Article  PubMed  CAS  Google Scholar 

  • Moorman AFM, Vermeulen JLM, Charles R, Lamers WH (1989) Localization of ammonia-metabolizing enzymes in human liver: ontogenesis of heterogeneity. Hepatology 9:367–372

    Article  PubMed  CAS  Google Scholar 

  • Nagami GT (2000) Renal ammonia production and excretion In: Seldin D, Geibisch G (ed) The Kindey. Physiology and pathophysiology, 3rd edn. Lippincott, Williams & Wilkins, pp 1995–2013

  • Nissim I (1999) Newer aspects of glutamine/glutamate metabolism: the role of acute pH changes. Am J Physiol Renal Physiol 227:G493–F497

    Google Scholar 

  • Nissim I, Yudkoff M, Segal S (1985) Metabolism of glutamine and glutamate by rat renal tubules. Study with 15N and gas chromatography-mass spectrometry. J Biol Chem 260:13955–13967

    PubMed  CAS  Google Scholar 

  • Nissim I, Brosnan ME, Yudkoff M, Brosnan JT (1999) Studies of hepatic glutamate metabolism in the perfused liver with (15)N-labeled glutamine. J Biol Chem 274:28958–28965

    Article  PubMed  CAS  Google Scholar 

  • Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310

    Article  PubMed  CAS  Google Scholar 

  • Nowik M, Lecca MR, Velic A, Rehrauer H, Brändli AW, Wagner CA (2008) Genome-wide gene expression profiling reveals renal genes regulated during metabolic acidosis. Physiol Genomics 32(3):322–334

    PubMed  CAS  Google Scholar 

  • Nussbaum MS, Berry SM (1996) Perenteral nutrition. In: Fischer JE (ed) Nutrition and metabolism in the surgical patient, 2nd edn. Little, Brown and Company, Boston, pp 715–759

    Google Scholar 

  • Pitts RF (1972) Symposium on acid-base homeostasis. Control of renal production of ammonia. Kidney Int 1(5):297–305

    Article  PubMed  CAS  Google Scholar 

  • Plaitakis A, Berl S, Yahr M (1984) Neurological disorders associated with deficiency of glutamate dehydrogenase. Ann Neurol 15:144–153

    Article  PubMed  CAS  Google Scholar 

  • Plaitakis A, Latsoudis H, Spanaki C (2011) The human GLUD2 glutamate dehydrogenase and its regulation in health and disease. Neurochem Int 59(4):495–509

    Article  PubMed  CAS  Google Scholar 

  • Poitry S, Poitry-Yamate C, Ueberfeld J, MacLeish P, Tsacopoulos M (2000) Mechanisms of glutamate metabolic signaling in retinal glial (Muller) cells. J Neurosci 20:1809–1821

    PubMed  CAS  Google Scholar 

  • Raichle ME, Larson KB (1981) The significance of the NH3–NH4+(4) equilibrium on the passage of 13 N-ammonia from blood to brain. An new regional residue detection model. Circ Res 48:913–937

    PubMed  CAS  Google Scholar 

  • Rappaport AM, Borowy ZJ, Lougheed WM, Lotto WN (1954) Subdivision of hexagonal liver lobules into a structural and functional unit. Anat Rec 119:11–33

    Article  PubMed  CAS  Google Scholar 

  • Rosso L, Marques A, Reichert A, Kaessmann H (2008) Mitochondrial targeting adaptation of the hominoid-specific glutamate dehydrogenase driven by positive Darwinian selection. PLoS Genet 4(8):e1000150

    Article  PubMed  Google Scholar 

  • Rothe F, Brosz M, Storm-Mathisen J (1994) Quantitative ultrastructural localization of glutamate dehydrogenase in the rat cerebellar cortex. Neuroscience 62:1133–1146

    Article  PubMed  CAS  Google Scholar 

  • Salganicoff L, De Robertis E (1965) Subcellular distribution of the enzymes of the glutamic acid, glutamine and gamma-aminobutyric acid cycles in rat brain. J Neurochem 12:287–309

    Article  PubMed  CAS  Google Scholar 

  • Schmidt E, Schmidt FW (1963) Distribution pattern of several enzymes in human liver and its variations during cell damage III. On the methodology of enzyme determination in human organ extracts and serum. Enzymol Biol Clin (Basel) 35:73–79

    CAS  Google Scholar 

  • Schoolwerth AC (1991) Regulation of renal ammoniagenesis in metabolic acidosis. Kidney Int 40:961–973

    Article  PubMed  CAS  Google Scholar 

  • Schoolwerth AC, LaNoue KF (1980) The role of microcompartmentation in the regulation of glutamate metabolism by rat kidney mitochondria. J Biol Chem 255:3403–3411

    PubMed  CAS  Google Scholar 

  • Schoolwerth AC, LaNoue KF (1983) Control of ammoniagenesis by α-ketoglutarate in rat kidney mitochondria. Am J Physiol 244:F399–F408 198329—31

    PubMed  CAS  Google Scholar 

  • Schoolwerth AC, Nazar BL, LaNoue KF (1978) Glutamate dehydrogenase activation and ammonia formation by rat kidney mitochondria. J Biol Chem 253:6177–6183

    PubMed  CAS  Google Scholar 

  • Sener A, Malaisse WJL (1980) Leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature 288(5787):187–189

    Article  PubMed  CAS  Google Scholar 

  • Shashidharan P, Michaelidis TM, Robakis NK, Kresovali A, Papamattheakis J, Plaitakis A (1994) Novel human glutamate dehydrogenase expressed in neural and testicular tissues and encoded by an X-linked intronless gene. J Biol Chem 269:16971–16976

    PubMed  CAS  Google Scholar 

  • Smith E (1979) The evolution of glutamate dehydrogenases and a hypothesis for the insertion or deletion of multiple residues in the interior of the polypeptide chain. Proc Am Phil Soc 123:73–84

    CAS  Google Scholar 

  • Smith T, Stanley C (2008) Untangling the glutamate dehydrogenase allosteric nightmare. Trends Biochem Sci 33:557–564

    Article  PubMed  CAS  Google Scholar 

  • Spanaki C, Zaganas I, Kleopas K, Plaitakis A (2010) Human GLUD2 glutamate dehydrogenase is expressed in neural and testicular supportive cells. J Biol Chem 285(22):16748–16756

    Article  PubMed  CAS  Google Scholar 

  • Stanley CA, Lieu YK, Hsu BYL, Burlina AB, Greenberg CR, Hopwood NJ, Perlman K, Rich BH, Zammarchi E, Poncz M (1998) Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 338:1352–1357

    Article  PubMed  CAS  Google Scholar 

  • Tannen RL, Kunin AS (1981) Effect of pH on metabolism of α-ketoglutarate by renal cortical mitochondria. Am J Physiol 240:F120–F126

    PubMed  CAS  Google Scholar 

  • Tomkins GM, Yielding KL, Curran JF (1962) The influence of diethylstilbestrol and adenosine diphosphate on pyridine nucleotide coenzyme binding by glutamic dehydrogenase. J Biol Chem 237:1704–1708

    PubMed  CAS  Google Scholar 

  • Treberg JR, Brosnan ME, Watford M, Brosnan JT (2010a) On the reversibility of glutamate dehydrogenase and the source of hyperammonemia in the hyperinsulinism/hyperammonemia syndrome. Adv Enzyme Regul 50(1):34–43

    Article  PubMed  Google Scholar 

  • Treberg JR, Clow KA, Greene KA, Brosnan ME, Brosnan JT (2010b) Systemic activation of glutamate dehydrogenase increases renal ammoniagenesis: implications for the hyperinsulinism/hyperammonemia syndrome. Am J Physiol Endocrinol Metab 298(6):E1219–E1225

    Article  PubMed  CAS  Google Scholar 

  • Van de Poll MCG, Soeters PB, Deutz NEP, Fearon KCH, Dejong CHC (2004) Renal metabolism of amino acids: its role in interorgan amino acid exchange. Am J Clin Nutr 2001 79:185–197

    Google Scholar 

  • Varki A (2004) How to make an ape brain. Nat Genet 36:1034–1036

    Article  PubMed  CAS  Google Scholar 

  • Yielding KL, Tomkins GM, Munday JS, Curran JF (1960) The effects of steroid hormones on the glutamic dehydrogenase reaction. Biochem Biophys Res Commun 2(4):303–306

    Article  Google Scholar 

  • Zaganas I, Plaitakis A (2002) Single amino acid substitution (G456A) in the vicinity of the GTP binding domain of human housekeeping glutamate dehydrogenase markedly attenuates GTP inhibition and abolishes the cooperative behavior of the enzyme. J Biol Chem 277:26422–26428

    Article  PubMed  CAS  Google Scholar 

  • Zaganas I, Spanaki C, Karpusas M, Plaitakis A (2002) Substitution of Ser for Arg-443 in the regulatory domain of human housekeeping (GLUD1) glutamate dehydrogenase virtually abolishes basal activity and markedly alters the activation of the enzyme by ADP and l-leucine. J Biol Chem 277:46552–46558

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Association for the Advancement of Research and Treatment of Neurologic Disorders of Crete≪EY ZHN≫. We thank Ioannis Zaganas for his contribution to developing the anti-hGDH2 specific antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleanthe Spanaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spanaki, C., Plaitakis, A. The Role of Glutamate Dehydrogenase in Mammalian Ammonia Metabolism. Neurotox Res 21, 117–127 (2012). https://doi.org/10.1007/s12640-011-9285-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-011-9285-4

Keywords

Navigation