Skip to main content
Log in

Neurotrophic Effects of Growth/Differentiation Factor 5 in a Neuronal Cell Line

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The neurotrophin growth/differentiation factor 5 (GDF5) is studied as a potential therapeutic agent for Parkinson’s disease as it is believed to play a role in the development and maintenance of the nigrostriatal system. Progress in understanding the effects of GDF5 on dopaminergic neurones has been hindered by the use of mixed cell populations derived from primary cultures or in vivo experiments, making it difficult to differentiate between direct and indirect effects of GDF5 treatment on neurones. In an attempt to establish an useful model to study the direct neuronal influence of GDF5, we have characterised the effects of GDF5 on a human neuronal cell line, SH-SY5Y. Our results show that GDF5 has the capability to promote neuronal but not dopaminergic differentiation. We also show that it promotes neuronal survival in vitro following a 6-hydroxydopamine insult. Our results show that application of GDF5 to SH-SY5Y cultures induces the SMAD pathway which could potentially be implicated in the intracellular transmission of GDF5’s neurotrophic effects. Overall, our study shows that the SH-SY5Y neuroblastoma cell line provides an excellent neuronal model to study the neurotrophic effects of GDF5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abad F, Maroto R, Lopez MG et al (1995) Pharmacological protection against the cytotoxicity induced by 6-hydroxydopamine and H2O2 in chromaffin cells. Eur J Pharmacol 293:55–64

    Article  PubMed  CAS  Google Scholar 

  • Akerud P, Alberch J, Eketjall S et al (1999) Differential effects of glial cell line-derived neurotrophic factor and neurturin on developing and adult substantia nigra dopaminergic neurons. J Neurochem 73:70–78

    Article  PubMed  CAS  Google Scholar 

  • Bartus RT (2009) CERE-120 (AAV2-NTN) for Parkinson’s Disease: Review of Progress and Future Plans. American Society of Cell and Gene Therapy Meeting, San Diego

    Google Scholar 

  • Berk AJ, Sharp PA (1977) Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell 12:721–732

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Del Tredici K, Rub U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Castelo-Branco G, Sousa KM, Bryja V et al (2006) Ventral midbrain glia express region-specific transcription factors and regulate dopaminergic neurogenesis through Wnt-5a secretion. Mol Cell Neurosci 31:251–262

    Article  PubMed  CAS  Google Scholar 

  • Clayton KB, Sullivan AM (2007) Differential effects of GDF5 on the medial and lateral rat ventral mesencephalon. Neurosci Lett 427:132–137

    Article  PubMed  CAS  Google Scholar 

  • Cookson MR (2005) The biochemistry of Parkinson’s disease. Annu Rev Biochem 74:29–52

    Article  PubMed  CAS  Google Scholar 

  • Gasmi M, Brandon EP, Herzog CD et al (2007a) AAV2-mediated delivery of human neurturin to the rat nigrostriatal system: long-term efficacy and tolerability of CERE-120 for Parkinson’s disease. Neurobiol Dis 27:67–76

    Article  PubMed  CAS  Google Scholar 

  • Gasmi M, Herzog CD, Brandon EP et al (2007b) Striatal delivery of neurturin by CERE-120, an AAV2 vector for the treatment of dopaminergic neuron degeneration in Parkinson’s disease. Mol Ther 15:62–68

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Patel NK, Hotton GR et al (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9:589–595

    Article  PubMed  CAS  Google Scholar 

  • Glinka Y, Gassen M, Youdim MB (1997) Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm Suppl 50:55–66

    PubMed  CAS  Google Scholar 

  • Gomez-Santos C, Ambrosio S, Ventura F et al (2002) TGF-beta1 increases tyrosine hydroxylase expression by a mechanism blocked by BMP-2 in human neuroblastoma SH-SY5Y cells. Brain Res 958:152–160

    Article  PubMed  CAS  Google Scholar 

  • Herzog CD, Dass B, Holden JE et al (2007) Striatal delivery of CERE-120, an AAV2 vector encoding human neurturin, enhances activity of the dopaminergic nigrostriatal system in aged monkeys. Mov Disord 22:1124–1132

    Article  PubMed  Google Scholar 

  • Horger BA, Nishimura MC, Armanini MP et al (1998) Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons. J Neurosci 18:4929–4937

    PubMed  CAS  Google Scholar 

  • Hurley FM, Costello DJ, Sullivan AM (2004) Neuroprotective effects of delayed administration of growth/differentiation factor-5 in the partial lesion model of Parkinson’s disease. Exp Neurol 185:281–289

    Article  PubMed  CAS  Google Scholar 

  • Kordower JH, Herzog CD, Dass B et al (2006) Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann Neurol 60:706–715

    Article  PubMed  CAS  Google Scholar 

  • Krieglstein K, Suter-Crazzolara C, Hotten G et al (1995) Trophic and protective effects of growth/differentiation factor 5, a member of the transforming growth factor-beta superfamily, on midbrain dopaminergic neurons. J Neurosci Res 42:724–732

    Article  PubMed  CAS  Google Scholar 

  • Lin LF, Doherty DH, Lile JD et al (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Rubin B, Bodine PV et al (2008) Wnt5a induces homodimerization and activation of Ror2 receptor tyrosine kinase. J Cell Biochem 105:497–502

    Article  PubMed  CAS  Google Scholar 

  • Lopes FM, Schroder R, Junior ML et al (2010) Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain Res 1337:85–94

    Article  PubMed  CAS  Google Scholar 

  • Marks WJ, Verhagen Metman L, Starr PA, et al (2006) Trophic factor gene transfer in Parkinson’s disease: preliminary outcomes from the phase I CERE-120 study. American Neurological Association, 131st Annual Meeting, Chicago, IL

  • Mastroeni D, Grover A, Leonard B et al (2009) Microglial responses to dopamine in a cell culture model of Parkinson’s disease. Neurobiol Aging 30:1805–1817

    Article  PubMed  CAS  Google Scholar 

  • Mayhew TM (1992) A review of recent advances in stereology for quantifying neural structure. J Neurocytol 21:313–328

    Article  PubMed  CAS  Google Scholar 

  • McMillan CR, Sharma R, Ottenhof T et al (2007) Modulation of tyrosine hydroxylase expression by melatonin in human SH-SY5Y neuroblastoma cells. Neurosci Lett 419:202–206

    Article  PubMed  CAS  Google Scholar 

  • Michel PP, Hefti F (1990) Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture. J Neurosci Res 26:428–435

    Article  PubMed  CAS  Google Scholar 

  • Nishitoh H, Ichijo H, Kimura M et al (1996) Identification of type I and type II serine/threonine kinase receptors for growth/differentiation factor-5. J Biol Chem 271:21345–21352

    Article  PubMed  CAS  Google Scholar 

  • O’Keeffe GW, Dockery P, Sullivan AM (2004a) Effects of growth/differentiation factor 5 on the survival and morphology of embryonic rat midbrain dopaminergic neurones in vitro. J Neurocytol 33:479–488

    Article  PubMed  Google Scholar 

  • O’Keeffe GW, Hanke M, Pohl J et al (2004b) Expression of growth differentiation factor-5 in the developing and adult rat brain. Brain Res Dev Brain Res 151:199–202

    Article  PubMed  Google Scholar 

  • Pahlman S, Ruusala AI, Abrahamsson L et al (1984) Retinoic acid-induced differentiation of cultured human neuroblastoma cells: a comparison with phorbolester-induced differentiation. Cell Differ 14:135–144

    Article  PubMed  CAS  Google Scholar 

  • Pahlman S, Hoehner JC, Nanberg E et al (1995) Differentiation and survival influences of growth factors in human neuroblastoma. Eur J Cancer 31A:453–458

    Article  PubMed  CAS  Google Scholar 

  • Patel NK, Bunnage M, Plaha P et al (2005) Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann Neurol 57:298–302

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg PA (1988) Catecholamine toxicity in cerebral cortex in dissociated cell culture. J Neurosci 8:2887–2894

    PubMed  CAS  Google Scholar 

  • Sammar M, Stricker S, Schwabe GC et al (2004) Modulation of GDF5/BRI-b signalling through interaction with the tyrosine kinase receptor Ror2. Genes Cells 9:1227–1238

    Article  PubMed  CAS  Google Scholar 

  • Sammar M, Sieber C, Knaus P (2009) Biochemical and functional characterization of the Ror2/BRIb receptor complex. Biochem Biophys Res Commun 381:1–6

    Article  PubMed  CAS  Google Scholar 

  • Slevin JT, Gerhardt GA, Smith CD et al (2005) Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J Neurosurg 102:216–222

    Article  PubMed  CAS  Google Scholar 

  • Storch A, Kaftan A, Burkhardt K et al (2000) 6-Hydroxydopamine toxicity towards human SH-SY5Y dopaminergic neuroblastoma cells: independent of mitochondrial energy metabolism. J Neural Transm 107:281–293

    Article  PubMed  CAS  Google Scholar 

  • Storch A, Ludolph AC, Schwarz J (2004) Dopamine transporter: involvement in selective dopaminergic neurotoxicity and degeneration. J Neural Transm 111:1267–1286

    Article  PubMed  CAS  Google Scholar 

  • Sullivan AM, Opacka-Juffry J, Hotten G et al (1997) Growth/differentiation factor 5 protects nigrostriatal dopaminergic neurones in a rat model of Parkinson’s disease. Neurosci Lett 233:73–76

    Article  PubMed  CAS  Google Scholar 

  • Sullivan AM, Pohl J, Blunt SB (1998) Growth/differentiation factor 5 and glial cell line-derived neurotrophic factor enhance survival and function of dopaminergic grafts in a rat model of Parkinson’s disease. Eur J Neurosci 10:3681–3688

    Article  PubMed  CAS  Google Scholar 

  • Sullivan AM, Opacka-Juffry J, Pohl J et al (1999) Neuroprotective effects of growth/differentiation factor 5 depend on the site of administration. Brain Res 818:176–179

    Article  PubMed  CAS  Google Scholar 

  • ten Dijke P, Miyazono K, Heldin CH (2000) Signaling inputs converge on nuclear effectors in TGF-beta signaling. Trends Biochem Sci 25:64–70

    Article  PubMed  CAS  Google Scholar 

  • Toulouse A, Sullivan AM (2008) Progress in Parkinson’s disease-where do we stand? Prog Neurobiol 85:376–392

    Article  PubMed  Google Scholar 

  • Wood TK, McDermott KW, Sullivan AM (2005) Differential effects of growth/differentiation factor 5 and glial cell line-derived neurotrophic factor on dopaminergic neurons and astroglia in cultures of embryonic rat midbrain. J Neurosci Res 80:759–766

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Jens Pohl from Biopharm GmbH for the generous gift of GDF5, Dr Gerard O’Keeffe from University College Cork for his comments, and the Higher Education Authority (Ireland) for funding through the PRTLI3 programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Toulouse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toulouse, A., Collins, G.C. & Sullivan, A.M. Neurotrophic Effects of Growth/Differentiation Factor 5 in a Neuronal Cell Line. Neurotox Res 21, 256–265 (2012). https://doi.org/10.1007/s12640-011-9266-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-011-9266-7

Keywords

Navigation