Skip to main content

Advertisement

Log in

Co-administration of Cisplatin and Furosemide Causes Rapid and Massive Loss of Cochlear Hair Cells in Mice

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

An Erratum to this article was published on 06 August 2011

Abstract

The expanding arsenal of transgenic mice has created a powerful tool for investigating the biological mechanisms involved in ototoxicity. However, cisplatin ototoxicity is difficult to investigate in mice because of their small size and vulnerability to death by nephrotoxicity. To overcome this problem, we developed a strategy for promoting cisplatin-induced ototoxicity by coadministration of furosemide a loop diuretic. A dose–response study identified 200 mg/kg of furosemide as the optimal dose for disrupting the stria vascularis and opening the blood–ear barrier. Our analysis of stria pathology indicated that the optimal period for administering cisplatin was 1 h after furosemide treatment. Combined treatment with 0.5 mg/kg of cisplatin and 200 mg/kg furosemide resulted in only moderate loss of outer hair cells in the basal 20% of the cochlea, only mild threshold shifts and minimal loss of distortion product otoacoustic emission (DPOAE). In contrast, 1 mg/kg of cisplatin plus 200 mg/kg of furosemide resulted in a permanent 40–50 dB elevation of auditory brainstem response thresholds, almost complete elimination of DPOAE, and nearly total loss of outer hair cells. The widespread outer hair cell lesions that develop in mice treated with cisplatin plus furosemide could serve as extremely useful murine model for investigating techniques for regenerating outer hair cells, studying the mechanisms of cisplatin and furosemide ototoxicity and assessing the perceptual and electrophysiological consequences of outer hair cell loss on central auditory plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABR:

Auditory brainstem response

ANOVA:

Analysis of variance

dB SPL:

Decibels sound pressure level

DPOAE:

Distortion product otoacoustic emissions

IHC:

Inner hair cells

i.p.:

Intraperitoneal

OHC:

Outer hair cells

s.c.:

Subcutaneous

SGN:

Spiral ganglion neurons

References

  • Ahokas JT, Nicholls FA, Ravenscroft PJ, Emmerson BT (1985) Inhibition of purified rat liver glutathione S-transferase isozymes by diuretic drugs. Biochem Pharmacol 34:2157–2161

    Article  PubMed  CAS  Google Scholar 

  • Blakley BW, Gupta AK, Myers SF, Schwan S (1994) Risk factors for ototoxicity due to cisplatin. Arch Otolaryngol Head Neck Surg 120:541–546

    PubMed  CAS  Google Scholar 

  • Blakley BW, Hochman J, Wellman M, Gooi A, Hussain AE (2008) Differences in ototoxicity across species. J Otolaryngol Head Neck Surg 37:700–703

    PubMed  Google Scholar 

  • Bowers WJ, Chen X, Guo H, Frisina DR, Federoff HJ, Frisina RD (2002) Neurotrophin-3 transduction attenuates cisplatin spiral ganglion neuron ototoxicity in the cochlea. Mol Ther 6:12–18

    Article  PubMed  CAS  Google Scholar 

  • Brookes ZL, Brown NJ, Reilly CS (2000) Intravenous anaesthesia and the rat microcirculation: the dorsal microcirculatory chamber. Br J Anaesth 85:901–903

    Article  PubMed  CAS  Google Scholar 

  • Brookes ZL, Brown NJ, Reilly CS (2002) Differential effects of intravenous anaesthetic agents on the response of rat mesenteric microcirculation in vivo after haemorrhage. Br J Anaesth 88:255–263

    Article  PubMed  CAS  Google Scholar 

  • Byun SS, Kim SW, Choi H, Lee C, Lee E (2005) Augmentation of cisplatin sensitivity in cisplatin-resistant human bladder cancer cells by modulating glutathione concentrations and glutathione-related enzyme activities. Br J Urol Int 95:1086–1090

    CAS  Google Scholar 

  • Chen GD, Kermany MH, D’Elia A, Ralli M, Tanaka C, Bielefeld EC et al (2010) Too much of a good thing: long-term treatment with salicylate strengthens outer hair cell function but impairs auditory neural activity. Hear Res 265:63–69

    Article  PubMed  CAS  Google Scholar 

  • Clerici WJ, Hensley K, DiMartino DL, Butterfield DA (1996) Direct detection of ototoxicant-induced reactive oxygen species generation in cochlear explants. Hear Res 98:116–124

    Article  PubMed  CAS  Google Scholar 

  • Coling DE, Ding D, Young R, Lis M, Stofko E, Blumenthal KM et al (2007) Proteomic analysis of cisplatin-induced cochlear damage: methods and early changes in protein expression. Hear Res 226:140–156

    Article  PubMed  CAS  Google Scholar 

  • Coradini PP, Cigana L, Selistre SG, Rosito LS, Brunetto AL (2007) Ototoxicity from cisplatin therapy in childhood cancer. J Pediatr Hematol Oncol 29:355–360

    Article  PubMed  CAS  Google Scholar 

  • Dallos P, Harris D (1978) Properties of auditory nerve responses in absence of outer hair cells. J Neurophysiol 41:365–383

    PubMed  CAS  Google Scholar 

  • Ding DL, Wang J, Salvi R, Henderson D, Hu BH, McFadden SL et al (1999) Selective loss of inner hair cells and type-I ganglion neurons in carboplatin-treated chinchillas: mechanisms of damage and protection. Ann N Y Acad Sci 884:152–170

    Article  PubMed  CAS  Google Scholar 

  • Ding D, McFadden SL, Salvi RJ (2001) Cochlear hair cell densities and inner ear staining techniques. In: Willott J (ed) The auditory psychobiology of the mouse. CRC Press, Boca Raton, FL, pp 189–204

    Google Scholar 

  • Ding D, McFadden SL, Woo JM, Salvi RJ (2002a) Ethacrynic acid rapidly and selectively abolishes blood flow in vessels supplying the lateral wall of the cochlea. Hear Res 173:1–9

    Article  PubMed  CAS  Google Scholar 

  • Ding D, Stracher A, Salvi RJ (2002b) Leupeptin protects cochlear and vestibular hair cells from gentamicin ototoxicity. Hear Res 164:115–126

    Article  PubMed  CAS  Google Scholar 

  • Ding D, McFadden SL, Browne RW, Salvi RJ (2003) Late dosing with ethacrynic acid can reduce gentamicin concentration in perilymph and protect cochlear hair cells. Hear Res 185:90–96

    Article  PubMed  CAS  Google Scholar 

  • Ding D, Jiang H, McFadden SL, Salvi RJ (2004) Ethacrynic acid is the key for opening of the blood-labyrinth barrier. Chin J Otol 1:42–47

    Google Scholar 

  • Ding D, Jiang H, Wang P, Salvi R (2007) Cell death after co-administration of cisplatin and ethacrynic acid. Hear Res 226:129–139

    Article  PubMed  CAS  Google Scholar 

  • Ding D, Qi W, Zhang M, Wang P, Jiang H, Salvi R (2008) Cisplatin and its ototoxicity. Chin J Otol 6:125–133

    Google Scholar 

  • Ding D, Jiang H, Salvi RJ (2010) Mechanisms of rapid sensory hair-cell death following co-administration of gentamicin and ethacrynic acid. Hear Res 259:16–23

    Article  PubMed  CAS  Google Scholar 

  • Forge A (1976) Observations on the stria vascularis of the guinea pig cochlea and the changes resulting from the administration of the diuretic furosemide. Clin Otolaryngol 1:211–219

    Article  PubMed  CAS  Google Scholar 

  • Grewal KK, Rafeiro E, Racz WJ (1996) Bromobenzene and furosemide hepatotoxicity: alterations in glutathione, protein thiols, and calcium. Can J Physiol Pharmacol 74:257–264

    PubMed  CAS  Google Scholar 

  • Guarino AM, Miller DS, Arnold ST, Pritchard JB, Davis RD, Urbanek MA et al (1979) Platinate toxicity: past, present, and prospects. Cancer Treat Rep 63:1475–1483

    PubMed  CAS  Google Scholar 

  • Harding GW, Bohne BA, Vos JD (2005) The effect of an age-related hearing loss gene (Ahl) on noise-induced hearing loss and cochlear damage from low-frequency noise. Hear Res 204:90–100

    Article  PubMed  Google Scholar 

  • He J, Yin S, Wang J, Ding D, Jiang H (2009) Effectiveness of different approaches for establishing cisplatin-induced cochlear lesions in mice. Acta Otolaryngol 2009:1–9

    Article  Google Scholar 

  • Heidemann HT, Gerkens JF, Jackson EK, Branch RA (1985) Attenuation of cisplatinum-induced nephrotoxicity in the rat by high salt diet, furosemide and acetazolamide. Naunyn Schmiedebergs Arch Pharmacol 329:201–205

    Article  PubMed  CAS  Google Scholar 

  • Hill GW, Morest DK, Parham K (2008) Cisplatin-induced ototoxicity: effect of intratympanic dexamethasone injections. Otol Neurotol 29:1005–1011

    Article  PubMed  Google Scholar 

  • Hofstetter P, Ding D, Powers N, Salvi RJ (1997) Quantitative relationship of carboplatin dose to magnitude of inner and outer hair cell loss and the reduction in distortion product otoacoustic emission amplitude in chinchillas. Hear Res 112:199–215

    Article  PubMed  CAS  Google Scholar 

  • Huang RS, Duan S, Shukla SJ, Kistner EO, Clark TA, Chen TX et al (2007) Identification of genetic variants contributing to cisplatin-induced cytotoxicity by use of a genomewide approach. Am J Hum Genet 81:427–437

    Article  PubMed  CAS  Google Scholar 

  • Humes HD (1999) Insights into ototoxicity. Analogies to nephrotoxicity. Ann N Y Acad Sci 884:15–18

    PubMed  CAS  Google Scholar 

  • Izumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF et al (2005) Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 11:271–276

    Article  PubMed  CAS  Google Scholar 

  • Jamesdaniel S, Ding D, Kermany MH, Davidson BA, Knight PR III, Salvi R et al (2008) Proteomic analysis of the balance between survival and cell death responses in cisplatin-mediated ototoxicity. J Proteome Res 7:3516–3524

    Article  PubMed  CAS  Google Scholar 

  • Johnson KR, Erway LC, Cook SA, Willott JF, Zheng QY (1997) A major gene affecting age-related hearing loss in C57BL/6J mice. Hear Res 114:83–92

    Article  PubMed  CAS  Google Scholar 

  • Juhn SK, Rybak LP (1981) Labyrinthine barriers and cochlear homeostasis. Acta Otolaryngol 91:529–534

    Article  PubMed  CAS  Google Scholar 

  • Kim JU, Lee HJ, Kang HH, Shin JW, Ku SW, Ahn JH et al (2005) Protective effect of isoflurane anesthesia on noise-induced hearing loss in mice. Laryngoscope 115:1996–1999

    Article  PubMed  CAS  Google Scholar 

  • Knight KR, Kraemer DF, Neuwelt EA (2005) Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development. J Clin Oncol 23:8588–8596

    Article  PubMed  Google Scholar 

  • Koch M, De Backer D, Vincent JL, Barvais L, Hennart D, Schmartz D (2008) Effects of propofol on human microcirculation. Br J Anaesth 101:473–478

    Article  PubMed  CAS  Google Scholar 

  • Laurell G, Engstrom B (1989) The combined effect of cisplatin and furosemide on hearing function in guinea pigs. Hear Res 38:19–26

    Article  PubMed  CAS  Google Scholar 

  • Laurell G, Jungnelius U (1990) High-dose cisplatin treatment: hearing loss and plasma concentrations. Laryngoscope 100:724–734

    Article  PubMed  CAS  Google Scholar 

  • Lee JE, Nakagawa T, Kim TS, Iguchi F, Endo T, Dong Y et al (2003) A novel model for rapid induction of apoptosis in spiral ganglions of mice. Laryngoscope 113:994–999

    Article  PubMed  Google Scholar 

  • Liu JX, Zhou XN, Yuan YG (1996) Effects of furosemide on intracochlear oxygen tension in the guinea pig. Eur Arch Otorhinolaryngol 253:367–370

    Article  PubMed  CAS  Google Scholar 

  • McAlpine D, Johnstone BM (1990) The ototoxic mechanism of cisplatin. Hear Res 47:191–203

    Article  PubMed  CAS  Google Scholar 

  • McFadden SL, Ding D, Burkard RF, Jiang H, Reaume AG, Flood DG et al (1999) Cu/Zn SOD deficiency potentiates hearing loss and cochlear pathology in aged 129, CD-1 mice. J Comp Neurol 413:101–112

    Article  PubMed  CAS  Google Scholar 

  • Müller M, von Hunerbein K, Hoidis S, Smolders JW (2005) A physiological place-frequency map of the cochlea in the CBA/J mouse. Hear Res 202:63–73

    Article  PubMed  Google Scholar 

  • Naito H, Watanabe K (1997) Alteration in capillary permeability of horseradish peroxidase in the stria vascularis and movement of leaked horseradish peroxidase after administration of furosemide. ORL J Otorhinolaryngol Relat Spec 59:248–257

    Article  PubMed  CAS  Google Scholar 

  • Natochin Yu V, Reznik LV, Bakhteeva VT, Myazina EM, Brovtsyn VK (1989) Cisplatin: nephrotoxic action in vertebrates and its prevention. Comp Biochem Physiol C 94:115–120

    Article  PubMed  Google Scholar 

  • Oesterle EC, Campbell S (2009) Supporting cell characteristics in long-deafened aged mouse ears. J Assoc Res Otolaryngol 10:525–544

    Article  PubMed  Google Scholar 

  • Oesterle EC, Campbell S, Taylor RR, Forge A, Hume CR (2008) Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol 9:65–89

    Article  PubMed  Google Scholar 

  • Ohlemiller KK, McFadden SL, Ding DL, Flood DG, Reaume AG, Hoffman EK et al (1999) Targeted deletion of the cytosolic Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss. Audiol Neuro-Otol 4:237–246

    Article  CAS  Google Scholar 

  • Oldenburg J, Kraggerud SM, Cvancarova M, Lothe RA, Fossa SD (2007) Cisplatin-induced long-term hearing impairment is associated with specific glutathione s-transferase genotypes in testicular cancer survivors. J Clin Oncol 25:708–714

    Article  PubMed  CAS  Google Scholar 

  • Oldenburg J, Fossa SD, Ikdahl T (2008) Genetic variants associated with cisplatin-induced ototoxicity. Pharmacogenomics 9:1521–1530

    Article  PubMed  CAS  Google Scholar 

  • Park HJ, Kim HJ, Bae GS, Seo SW, Kim DY, Jung WS et al (2009) Selective GSK-3beta inhibitors attenuate the cisplatin-induced cytotoxicity of auditory cells. Hear Res 257:53–62

    Article  PubMed  CAS  Google Scholar 

  • Peters U, Preisler-Adams S, Hebeisen A, Hahn M, Seifert E, Lanvers C et al (2000) Glutathione S-transferase genetic polymorphisms and individual sensitivity to the ototoxic effect of cisplatin. Anticancer Drugs 11:639–643

    Article  PubMed  CAS  Google Scholar 

  • Poirrier AL, Van den Ackerveken P, Kim TS, Vandenbosch R, Nguyen L, Lefebvre PP et al (2010) Ototoxic drugs: difference in sensitivity between mice and guinea pigs. Toxicol Lett 193:41–49

    Article  PubMed  CAS  Google Scholar 

  • Preckel MP, Ferber-Viart C, Leftheriotis G, Dubreuil C, Duclaux R, Saumet JL et al (1998) Autoregulation of human inner ear blood flow during middle ear surgery with propofol or isoflurane anesthesia during controlled hypotension. Anesth Analg 87:1002–1008

    PubMed  CAS  Google Scholar 

  • Riedemann L, Lanvers C, Deuster D, Peters U, Boos J, Jurgens H et al (2008) Megalin genetic polymorphisms and individual sensitivity to the ototoxic effect of cisplatin. Pharmacogenomics J 8:23–28

    Article  PubMed  CAS  Google Scholar 

  • Ross CJ, Katzov-Eckert H, Dube MP, Brooks B, Rassekh SR, Barhdadi A et al (2009) Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat Genet 41:1345–1349

    Article  PubMed  CAS  Google Scholar 

  • Ryan A, Dallos P (1975) Effect of absence of cochlear outer hair cells on behavioural auditory threshold. Nature 253:44–46

    Article  PubMed  CAS  Google Scholar 

  • Rybak LP, Whitworth CA, Mukherjea D, Ramkumar V (2007) Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res 226:157–167

    Article  PubMed  CAS  Google Scholar 

  • Santoso JT, Lucci JA III, Coleman RL, Schafer I, Hannigan EV (2003) Saline, mannitol, and furosemide hydration in acute cisplatin nephrotoxicity: a randomized trial. Cancer Chemother Pharmacol 52:13–18

    Article  PubMed  CAS  Google Scholar 

  • Schell MJ, McHaney VA, Green AA, Kun LE, Hayes FA, Horowitz M et al (1989) Hearing loss in children and young adults receiving cisplatin with or without prior cranial irradiation. J Clin Oncol 7:754–760

    PubMed  CAS  Google Scholar 

  • Schmitt NC, Rubel EW, Nathanson NM (2009) Cisplatin-induced hair cell death requires STAT1 and is attenuated by epigallocatechin gallate. J Neurosci 29:3843–3851

    Article  PubMed  CAS  Google Scholar 

  • Skinner R (2004) Best practice in assessing ototoxicity in children with cancer. Eur J Cancer 40:2352–2354

    Article  PubMed  Google Scholar 

  • Versnel H, Agterberg MJ, de Groot JC, Smoorenburg GF, Klis SF (2007) Time course of cochlear electrophysiology and morphology after combined administration of kanamycin and furosemide. Hear Res 231:1–12

    Article  PubMed  CAS  Google Scholar 

  • Walsh TJ, Clark AW, Parhad IM, Green WR (1982) Neurotoxic effects of cisplatin therapy. Arch Neurol 39:719–720

    PubMed  CAS  Google Scholar 

  • Wang J, Ladrech S, Pujol R, Brabet P, Van De Water TR, Puel JL (2004) Caspase inhibitors, but not c-Jun NH2-terminal kinase inhibitor treatment, prevent cisplatin-induced hearing loss. Cancer Res 64:9217–9224

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Inai S, Jinnouchi K, Bada S, Hess A, Michel O et al (2002) Nuclear-factor kappa B (NF-kappa B)-inducible nitric oxide synthase (iNOS/NOS II) pathway damages the stria vascularis in cisplatin-treated mice. Anticancer Res 22:4081–4085

    PubMed  CAS  Google Scholar 

  • Yamane H, Nakai Y (1988) Furosemide-induced alteration of drug pathway to cochlea. Acta Otolaryngol Suppl 447:28–35

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Liu W, Ding D, Salvi R (2003) Pifithrin-alpha suppresses p53 and protects cochlear and vestibular hair cells from cisplatin-induced apoptosis. Neuroscience 120:191–205

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZY, Zhang Z, Fauser U, Artelt M, Burnet M, Schluesener HJ (2007) Dexamethasone transiently attenuates up-regulation of endostatin/collagen XVIII following traumatic brain injury. Neuroscience 147:720–726

    Article  PubMed  CAS  Google Scholar 

  • Zheng QY, Johnson KR (2001) Hearing loss associated with the modifier of deaf waddler (mdfw) locus corresponds with age-related hearing loss in 12 inbred strains of mice. Hear Res 154:45–53

    Article  PubMed  CAS  Google Scholar 

  • Zuur CL, Simis YJ, Lansdaal PE, Hart AA, Schornagel JH, Dreschler WA et al (2007) Ototoxicity in a randomized phase III trial of intra-arterial compared with intravenous cisplatin chemoradiation in patients with locally advanced head and neck cancer. J Clin Oncol 25:3759–3765

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This article was supported in part by NIH grant R01DC006630.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Salvi.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12640-011-9262-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Ding, D., Jiang, H. et al. Co-administration of Cisplatin and Furosemide Causes Rapid and Massive Loss of Cochlear Hair Cells in Mice. Neurotox Res 20, 307–319 (2011). https://doi.org/10.1007/s12640-011-9244-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-011-9244-0

Keywords

Navigation