Skip to main content
Log in

Inhibition of Hydrogen Sulfide Generation Contributes to 1-Methy-4-Phenylpyridinium Ion-Induced Neurotoxicity

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) overproduction contributes to the neurotoxicity of 1-methy-4-phenylpyridinium ion (MPP+). Increasing studies have shown that hydrogen sulfide (H2S) is an endogenous antioxidant gas. We have hypothesized that MPP+-caused neurotoxicity may involve the imbalance of proportion to this endogenous protective antioxidant gas. The aim of this study is to evaluate whether MPP+ disturbs H2S synthesis in PC12 cells, a clonal rat pheochromocytoma cell line, and whether disturbance of H2S generation induced by MPP+ is an underlying mechanism of MPP+-induced neurotoxicity. We show that exposure of PC12 cells to MPP+ causes a significant decrease in H2S generation and results in remarkable cell damage. We find that cystathionine-β-synthetase (CBS) is catalyzed in PC12 cells to generate H2S, and that both expression and activity of CBS are inhibited by MPP+ treatment. Exposure of sodium hydrosulfide (NaHS), a donor of H2S, extenuates MPP+-induced cytotoxicity and ROS accumulation in PC12 cells, while inhibition of CBS by amino-oxyacetate (AOAA) exacerbates the effects of MPP+. These results indicate that MPP+ neurotoxicity involves reduction of H2S production, which is caused by inhibition of CBS. This study provides novel insights into cell death observed in neurodegenerative disease such as Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071

    CAS  PubMed  Google Scholar 

  • Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207–219

    Article  CAS  PubMed  Google Scholar 

  • Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65:135–172

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Geng B, Yu F, Zhao J, Jiang H, Du J, Tang C (2008) Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids 34:573–585

    Article  CAS  PubMed  Google Scholar 

  • Cheung NS, Peng ZF, Chen MJ, Moore PK, Whiteman M (2007) Hydrogen sulfide induced neuronal death occurs via glutamate receptor and is associated with calpain activation and lysosomal rupture in mouse primary cortical neurons. Neuropharmacology 53:505–514

    Article  CAS  PubMed  Google Scholar 

  • Dawson TM, Dawson VL (2002) Neuroprotective and neurorestorative strategies for Parkinson’s disease. Nat Neurosci 5(Suppl):1058–1061

    Article  CAS  PubMed  Google Scholar 

  • Dwyer BE, Raina AK, Perry G, Smith MA (2004) Homocysteine and Alzheimer’s disease: a modifiable risk? Free Radic Biol Med 36:1471–1475

    Article  CAS  PubMed  Google Scholar 

  • Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L et al (2007) Hydrogen sulfide attenuates myocardial ischemia–reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci USA 104:15560–15565

    Article  CAS  PubMed  Google Scholar 

  • Geng B, Chang L, Pan C, Qi Y, Zhao J, Pang Y, Du J, Tang C (2004) Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Commun 318:756–763

    Article  CAS  PubMed  Google Scholar 

  • Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428

    Article  CAS  PubMed  Google Scholar 

  • Heikkila RE, Hess A, Duvoisin RC (1984) Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice. Science 224:1451–1453

    Article  CAS  PubMed  Google Scholar 

  • Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531

    Article  CAS  PubMed  Google Scholar 

  • Hu LF, Lu M, Wu ZY, Wong PT, Bian JS (2009) Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function. Mol Pharmacol 75:27–34

    Article  CAS  PubMed  Google Scholar 

  • Kamoun P (2004) Endogenous production of hydrogen sulfide in mammals. Amino Acids 26:243–254

    Article  CAS  PubMed  Google Scholar 

  • Kamoun P, Belardinelli MC, Chabli A, Lallouchi K, Chadefaux-Vekemans B (2003) Endogenous hydrogen sulfide overproduction in Down syndrome. Am J Med Genet A 116A:310–311

    Article  PubMed  Google Scholar 

  • Kimura H (2000) Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun 267:129–133

    Article  CAS  PubMed  Google Scholar 

  • Kimura H (2002) Hydrogen sulfide as a neuromodulator. Mol Neurobiol 26:13–19

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18:1165–1167

    CAS  PubMed  Google Scholar 

  • Kimura Y, Goto Y, Kimura H (2010) Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal 12:1–13

    Article  CAS  PubMed  Google Scholar 

  • Kirik D, Annett LE, Burger C, Muzyczka N, Mandel RJ, Bjorklund A (2003) Nigrostriatal alpha-synucleinopathy induced by viral vector-mediated overexpression of human alpha-synuclein: a new primate model of Parkinson’s disease. Proc Natl Acad Sci USA 100:2884–2889

    Article  CAS  PubMed  Google Scholar 

  • Lowicka E, Beltowski J (2007) Hydrogen sulfide (H2S)—the third gas of interest for pharmacologists. Pharmacol Rep 59:4–24

    CAS  PubMed  Google Scholar 

  • Mitsuhashi H, Yamashita S, Ikeuchi H, Kuroiwa T, Kaneko Y, Hiromura K, Ueki K, Nojima Y (2005) Oxidative stress-dependent conversion of hydrogen sulfide to sulfite by activated neutrophils. Shock 24:529–534

    Article  CAS  PubMed  Google Scholar 

  • Morrison LD, Smith DD, Kish SJ (1996) Brain S-adenosylmethionine levels are severely decreased in Alzheimer’s disease. J Neurochem 67:1328–1331

    Article  CAS  PubMed  Google Scholar 

  • Nakao A, Sugimoto R, Billiar TR, McCurry KR (2009) Therapeutic antioxidant medical gas. J Clin Biochem Nutr 44:1–13

    Article  CAS  PubMed  Google Scholar 

  • Przedborski S, Vila M (2003) The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson’s disease. Ann N Y Acad Sci 991:189–198

    Article  CAS  PubMed  Google Scholar 

  • Przedborski S, Tieu K, Perier C, Vila M (2004) MPTP as a mitochondrial neurotoxic model of Parkinson’s disease. J Bioenerg Biomembr 36:375–379

    Article  CAS  PubMed  Google Scholar 

  • Qian JJ, Cheng YB, Yang YP, Mao CJ, Qin ZH, Li K, Liu CF (2008) Differential effects of overexpression of wild-type and mutant human alpha-synuclein on MPP+-induced neurotoxicity in PC12 cells. Neurosci Lett 435:142–146

    Article  CAS  PubMed  Google Scholar 

  • Qu K, Chen CP, Halliwell B, Moore PK, Wong PT (2006) Hydrogen sulfide is a mediator of cerebral ischemic damage. Stroke 37:889–893

    Article  CAS  PubMed  Google Scholar 

  • Rebois RV, Reynolds EE, Toll L, Howard BD (1980) Storage of dopamine and acetylcholine in granules of PC12, a clonal pheochromocytoma cell line. Biochemistry 19:1240–1248

    Article  CAS  PubMed  Google Scholar 

  • Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483

    Article  CAS  PubMed  Google Scholar 

  • Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H (2009) 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11:703–714

    Article  CAS  PubMed  Google Scholar 

  • Szabo C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6:917–935

    Article  CAS  PubMed  Google Scholar 

  • Tang XQ, Yang CT, Chen J, Yin WL, Tian SW, Hu B, Feng JQ, Li YJ (2008) Effect of hydrogen sulphide on beta-amyloid-induced damage in PC12 cells. Clin Exp Pharmacol Physiol 35:180–186

    CAS  PubMed  Google Scholar 

  • Walrand S, Valeix S, Rodriguez C, Ligot P, Chassagne J, Vasson MP (2003) Flow cytometry study of polymorphonuclear neutrophil oxidative burst: a comparison of three fluorescent probes. Clin Chim Acta 331:103–110

    Article  CAS  PubMed  Google Scholar 

  • Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798

    Article  CAS  PubMed  Google Scholar 

  • Whiteman M, Armstrong JS, Chu SH, Jia-Ling S, Wong BS, Cheung NS, Halliwell B, Moore PK (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J Neurochem 90:765–768

    Article  CAS  PubMed  Google Scholar 

  • Whiteman M, Cheung NS, Zhu YZ, Chu SH, Siau JL, Wong BS, Armstrong JS, Moore PK (2005) Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem Biophys Res Commun 326:794–798

    Article  CAS  PubMed  Google Scholar 

  • Whiteman M, Li L, Kostetski I, Chu SH, Siau JL, Bhatia M, Moore PK (2006) Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem Biophys Res Commun 343:303–310

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Shang Y, Sun S, Liang H, Liu R (2007) Erythropoietin prevents PC12 cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis via the Akt/GSK-3beta/caspase-3 mediated signaling pathway. Apoptosis 12:1365–1375

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Sawada H, Izumi Y, Kume T, Katsuki H, Shimohama S, Akaike A (2007) Proteasome inhibition induces glutathione synthesis and protects cells from oxidative stress: relevance to Parkinson disease. J Biol Chem 282:4364–4372

    Article  CAS  PubMed  Google Scholar 

  • Yin WL, He JQ, Hu B, Jiang ZS, Tang XQ (2009) Hydrogen sulfide inhibits MPP(+)-induced apoptosis in PC12 cells. Life Sci 85:269–275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Y. Wang for excellent revising. This study was supported by Natural Science Foundation of China (30770740), Natural Science Foundation of Hunan Province, China (06JJ2074), China Postdoctoral Science Foundation (2005038233), Plan Project for Scientific Research, Department of Science and Technology, Hunan Province (05FJ3039), and the Research Foundation of Education Bureau of Hunan Province (06C700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Qing Tang or Yuan-Jian Li.

Additional information

Xiao-Qing Tang and Li-Li Fan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, XQ., Fan, LL., Li, YJ. et al. Inhibition of Hydrogen Sulfide Generation Contributes to 1-Methy-4-Phenylpyridinium Ion-Induced Neurotoxicity. Neurotox Res 19, 403–411 (2011). https://doi.org/10.1007/s12640-010-9180-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-010-9180-4

Keywords

Navigation