Skip to main content
Log in

Glutamate Carboxypeptidase Inhibition Reduces the Severity of Chemotherapy-Induced Peripheral Neurotoxicity in Rat

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Chemotherapy is the most common method to treat cancer. The use of certain antineoplastic drugs, however, is associated with the development of peripheral neuropathy that can be dose-limiting. Excitotoxic glutamate release, leading to excessive glutamatergic neurotransmission and activation of N-methyl-d-aspartate (NMDA) receptors, is associated with neuronal damage and death in several nervous system disorders. N-Acetyl-aspartyl-glutamate (NAAG) is an abundant neuropeptide widely distributed in the central and peripheral nervous system which is physiologically hydrolyzed by the enzyme glutamate carboxypeptidase into N-Acetyl-aspartyl (NAA) and glutamate. Pharmacological inhibition of glutamate carboxypeptidase results in decreased glutamate and increased endogenous NAAG and has been shown to provide neuroprotection in several preclinical models. Here, we report the neuroprotective effect of an orally available glutamate carboxypeptidase inhibitor on three well-established animal models of chemotherapy (cisplatin, paclitaxel, bortezomib)-induced peripheral neuropathy. In all cases, glutamate carboxypeptidase inhibition significantly improved the chemotherapy-induced nerve conduction velocity deficits. In addition, morphological and morphometrical alterations induced by cisplatin and bortezomib in dorsal root ganglia (DRG) were improved by glutamate carboxypeptidase inhibition. Our data support a novel approach for the treatment of chemotherapy-induced peripheral neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aarts MM, Tymianski M (2003) Novel treatment of excitotoxicity: targeted disruption of intracellular signalling from glutamate receptors. Biochem Pharmacol 66:877–886

    Article  CAS  PubMed  Google Scholar 

  • Aarts MM, Arundine M, Tymianski M (2003) Novel concepts in excitotoxic neurodegeneration after stroke. Expert Rev Mol Med 5(30):1–22

    Article  PubMed  Google Scholar 

  • Authier N, Gillet JP (2003) An animal model of nociceptive peripheral neuropathy following repeated cisplatin injections. Exp Neurol 182:12–20

    Article  CAS  PubMed  Google Scholar 

  • Bacich DJ, Wozniak KM, May Lu XC, O’Keefe DS, Callizot N, Heston WD, Slusher BS (2005) Mice lacking glutamate carboxypeptidase II are protected from peripheral neuropathy and ischemic brain injury. J Neurochem 95:314–323

    Article  CAS  PubMed  Google Scholar 

  • Berent-Spillson A, Russell JW (2007) Metabotropic glutamate receptor 3 protects neurons from glucose-induced oxidative injury by increasing intracellular glutamate concentration. J Neurochem 101:342–354

    Article  CAS  PubMed  Google Scholar 

  • Berger UV, Schwab ME (1996) N-Acetylated alpha-linked acidic dipeptidase may be involved in axon Schwann cell signaling. J Neurocytol 25:499–512

    Article  CAS  PubMed  Google Scholar 

  • Berger UV, Carter RE, McKee M, Coyle JT (1995) N-Acetylated alpha-linked acidic dipeptidase is expressed by non-myelinating Schwann cells in the peripheral nervous system. J Neurocytol 2(2):99–109

    Article  Google Scholar 

  • Berger UV, Luthi-Carter R, Passani LA, Elkabes S, Black I, Konradi C, Coyle JT (1999) Glutamate carboxypeptidase II is expressed by astrocytes in the adult rat nervous system. J Comp Neurol 415(1):52–64

    Article  CAS  PubMed  Google Scholar 

  • Blaabjerg M, Fang L, Zimmer J, Baskys A (2003) Neuroprotection against NMDA excitotoxicity by group I metabotropic glutamate receptors is associated with reduction of NMDA stimulated currents. Exp Neurol 183:573–580

    Article  CAS  PubMed  Google Scholar 

  • Bruno V, Wroblewska B, Wroblewska JT, Fiori L, Nicoletti F (1998) Neuroprotective activity of N-acetyl-aspartyl-glutamate in cultured cortical cells. Neuroscience 85:751–757

    Article  CAS  PubMed  Google Scholar 

  • Bzdega T, Turi T, Wroblewska B, She D, Chung HS, Kim H, Neale JH (1997) Molecular cloning of a peptidase against N-acetyl-aspartyl-glutamate from a rat hippocampal cDNA library. J Neurochem 69(6):2270–2277

    CAS  PubMed  Google Scholar 

  • Bzdega T, Crowe SL, Ramadan ER, Sciarretta KH, Olszewski RT, Ojeifo OA, Rafalski VA, Wroblewska B, Neale JH (2004) The cloning and characterization of a second brain enzyme with NAAG peptidase activity. J Neurochem 89(3):627–635

    Article  CAS  PubMed  Google Scholar 

  • Cai Z, Xiao F, Fratkin JD, Rhodes PG (1999) Protection of neonatal rat brain from hypoxic-ischemic injury by LY379268, a Group II metabotropic glutamate receptor agonist. Neuroreport 10:3927–3931

    Article  CAS  PubMed  Google Scholar 

  • Cameron NE, Cotter MA (1994) The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications. Diab Metab Rev 10:189–224

    CAS  Google Scholar 

  • Cangro CB, Namboodiri MA, Sklar LA, Corigliano-Murphy A, Neale JH (1987) Immunohistochemistry and biosynthesis of N-acetyl-aspartyl-glutamate in spinal sensory ganglia. J Neurochem 49(5):1579–1588

    Article  CAS  PubMed  Google Scholar 

  • Carozzi VA, Marmiroli P, Cavaletti G (2008a) Focus on the role of glutamate in the pathology of peripheral nervous system. CNS Neurol Disord Drug Targets 7(4):348–360

    Article  CAS  PubMed  Google Scholar 

  • Carozzi VA, Canta A, Oggioni N, Ceresa C, Marmiroli P, Konvalinka J, Zoia C, Bossi M, Ferrarese C, Tredici G, Cavaletti G (2008b) Expression and distribution of “High affinity” glutamate transporters and GCPII in the peripheral nervous system. J Anat 213(5):539–546

    PubMed  Google Scholar 

  • Carozzi V, Chiorazzi A, Canta A, Oggioni N, Gilardini A, Rodriguez-Menendez V, Avezza F, Crippa L, Ceresa C, Nicolini G, Bossi M, Cavaletti G (2009) Effect of the chronic combined administration of cisplatin and paclitaxel in a rat model of peripheral neurotoxicity. Eur J Cancer 45(4):656–665

    Article  CAS  PubMed  Google Scholar 

  • Carpenter KJ, Sen S, Matthews WA, Flatters SL, Wozniak KM, Slusher BS, Dickenson AH (2003) Effects of GCP II inhibition on responses of dorsal horn neurones after inflammation and neuropathy: an electrophysiological study in the rat. Neuropeptides 37:2998–3006

    Article  CAS  Google Scholar 

  • Carter RE, Feldman AR, Coyle JT (1996) Prostate-specific membrane antigen is a hydrolase with substrate and pharmacologic characteristics of a neuropeptidase. Proc Natl Acad Sci USA 93(2):749–753

    Article  CAS  PubMed  Google Scholar 

  • Cartmell J, Schoepp DD (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 75(3):889–907

    Article  CAS  PubMed  Google Scholar 

  • Cavaletti G, Petruccioli MG, Tredici G, Marmiroli P, Barajon I, Fabbrica D, Di Francesco A (1991) Effects of repeated administration of low doses of cisplatin on the rat nervous system. Int J Tissue React 13(3):151–157

    CAS  PubMed  Google Scholar 

  • Cavaletti G, Tredici G, Marmiroli P, Petruccioli MG, Barajon I, Fabbrica D (1992) Morphometric study of the sensory neuron and peripheral nerve changes induced by chronic cisplatin (DDP) administration in rats. Acta Neuropathol 84(4):364–371

    Article  CAS  PubMed  Google Scholar 

  • Cavaletti G, Tredici G, Braga M, Tazzari S (1995) Experimental peripheral neuropathy induced in adult rats by repeated intraperitoneal administration of taxol. Exp Neurol 133(1):64–72

    Article  CAS  PubMed  Google Scholar 

  • Cavaletti G, Cavalletti E, Oggioni N, Sottani C, Minoia C, D’Incalci M, Zucchetti M, Marmiroli P, Tredici G (2000) Distribution of paclitaxel within the nervous system of the rat after repeated intravenous administration. Neurotoxicology 21:389–393

    CAS  PubMed  Google Scholar 

  • Cavaletti G, Gilardini A, Canta A, Rigamonti L, Rodriguez-Menendez V, Ceresa C, Marmiroli P, Bossi M, Oggioni N, D’Incalci M, De Coster R (2007) Bortezomib-induced peripheral neurotoxicity: a neurophysiological and pathological study in the rat. Exp Neurol 204(1):317–325

    Article  CAS  PubMed  Google Scholar 

  • Cavaletti G, Nicolini G, Marmiroli P (2008) Neurotoxic effects of antineoplastic drugs: the lesson of pre-clinical studies. Front Biosci 13:3506–3524

    Article  CAS  PubMed  Google Scholar 

  • Conn PJ (2003) Physiological roles and therapeutic potential of metabotropic glutamate receptors. Ann NY Acad Sci 1003:12–21

    Article  CAS  PubMed  Google Scholar 

  • Cornblath DR, Brown MJ (1988) Influence of malnutrition on developing rat peripheral nerves. Exp Neurol 99(2):403–411

    Article  CAS  PubMed  Google Scholar 

  • Cotter MA, Love A, Watt MJ, Cameron NE, Dines KC (1995) Effects of natural free radical scavengers on peripheral nerve and neurovascular function in diabetic rats. Diabetologia 38:1285–1294

    Article  CAS  PubMed  Google Scholar 

  • Fricker AC, Mok MH, de la Flor R, Shah AJ, Woolley M, Dawson LA, Kew JN (2009) Effects of N-acetyl-aspartyl-glutamate (NAAG) at group II mGluRs and NMDAR. Neuropharmacology 56(6–7):1060–1067

    Article  CAS  PubMed  Google Scholar 

  • Ghadge GD, Slusher BS, Bodner A, Canto MD, Wozniak K, Thomas AG, Rojas C, Tsukamoto T, Majer P, Miller RJ, Monti AL, Roos RP (2003) Glutamate carboxypeptidase II inhibition protects motor neurons from death in familiar amyotrophic lateral sclerosis models. Proc Natl Acad Sci USA 100(16):9554–9559

    Article  CAS  PubMed  Google Scholar 

  • Jackson PF, Cole DC, Slusher BS, Stetz SL, Ross LE, Donzanti BA, Trainor DA (1996) Design, synthesis and biological activity of a potent inhibitor of the neuropeptidase N-acetylated-α-linked acidic dipeptidase. J Med Chem 39:619–622

    Article  CAS  PubMed  Google Scholar 

  • Kawamata M, Omote K (1996) Involvement of increased excitatory amino acids and intracellular Ca2+ concentration in the spinal dorsal horn in an animal model of neuropathic pain. Pain 68:85–96

    Article  CAS  PubMed  Google Scholar 

  • Kidd FL, Isaac JT (2000) Glutamate transport blockade has a differential effect on AMPA and NMDA receptor-mediated synaptic transmission in developing barrel cortex. Neuropharmacology 39(5):725–732

    Article  CAS  PubMed  Google Scholar 

  • Kwak S, Weiss JH (2006) Calcium-permeable AMPA channels in neurodegenerative disease and ischemia. Curr Opin Neurobiol 16(3):281–287

    Article  CAS  PubMed  Google Scholar 

  • Landowski TH, Megli CJ, Nullmeyer KD, Lynch RM, Dorr RT (2005) Mitochondrial-mediated dysregulation of Ca2+ is a critical determinant of Velcade (PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res 65:3828–3838

    Article  CAS  PubMed  Google Scholar 

  • Leker RR, Shohami E (2002) Cerebral ischemia and trauma-different aetiologies yet similar mechanisms: neuroprotective opportunities. Brain Res Rev 39:55–73

    Article  PubMed  Google Scholar 

  • Lieberman EM (1991) Role of glutamate in axon-Schwann cell signaling in the squid. Ann NY Acad Sci 633:448–457

    Article  CAS  PubMed  Google Scholar 

  • Lieberman EM, Hargittai PT, Grossfeld RM (1994) Electrophysiological and metabolic interactions between axons and glia in crayfish and squid. Prog Neurobiol 44(4):333–376

    Article  CAS  PubMed  Google Scholar 

  • Losi G, Vicini S, Neale J (2004) NAAG fails to antagonize synaptic and extrasynaptic NMDA receptors in cerebellar granule neurons. J Neurosci 6:3385–3392

    Google Scholar 

  • Meijer C, de Vries EG, Marmiroli P, Tredici G, Frattola L, Cavaletti G (1999) Cisplatin-induced DNA-platination in experimental dorsal root ganglia neuronopathy. Neurotoxicology 20(6):883–887

    CAS  PubMed  Google Scholar 

  • Neale JH, Olszewski RT, Gehl LM, Wroblewska B, Bzdega T (2005) The neurotransmitter N-acetylaspartylglutamate in models of pain, ALS, diabetic neuropathy, CNS injury and schizophrenia. Trends Pharmacol Sci 26(9):477–484

    CAS  PubMed  Google Scholar 

  • Nishizawa Y (2001) Glutamate release and neuronal damage in ischemia. Life Sci 69(4):369–381

    Article  CAS  PubMed  Google Scholar 

  • Ocean AJ, Vahdat LT (2004) Chemotherapy-induced peripheral neuropathy: pathogenesis and emerging therapies. Support Care Cancer 12(9):619–625

    PubMed  Google Scholar 

  • Persohn E, Canta A, Schoepfer S, Traebert M, Mueller L, Gilardini A, Galbiati S, Nicolini G, Scuteri A, Lanzani F, Giussani G, Cavaletti G (2005) Morphological and morphometric analysis of paclitaxel and docetaxel-induced peripheral neuropathy in rats. Eur J Cancer 41(10):1460–1466

    Article  CAS  PubMed  Google Scholar 

  • Pisano G, Pratesi D, Laccabue F, Zunino P, Lo Giudice A, Bellucci L, Pacifici B, Camerini L, Vesci M, Castorina A, Cocuzza M, Tredici G, Marmiroli P, Nicolini G, Galbiati S, Calvani M, Carminati P, Cavaletti G (2003) Paclitaxel and cisplatin-induced neurotoxicity: a protective role of acetyl-l-carnitine. Clin Cancer Res 9:5756–5767

    CAS  PubMed  Google Scholar 

  • Quasthoff S, Hartung HP (2002) Chemotherapy-induced peripheral neuropathy. J Neurol 249(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Riveros N, Orrego F (1984) A study of possible excitatory effects of N-acetyl-aspartyl-glutamate in different in vivo and in vitro brain preparations. Brain Res 299(2):393–395

    Article  CAS  PubMed  Google Scholar 

  • Robinson MB, Blakely RD, Couto R, Coyle JT (1987) Hydrolysis of the brain dipeptide N-acetyl-l-aspartyl-l-glutamate. Identification and characterization of a novel N-acetylated alpha-linked acidic dipeptidase activity from rat brain. J Biol Chem 262(30):14498–14506

    CAS  PubMed  Google Scholar 

  • Sagara Y, Schubert D (1998) The activation of metabotropic glutamate receptors protects nerve cells from oxidative stress. J Neurosci 18:6662–6671

    CAS  PubMed  Google Scholar 

  • Sakakibara N, Suzuki K, Kaneta H, Yoshimura Y, Deyama Y, Matsumoto A, Fukuda H (1999) Inhibition of Na+, K+-ATPase by cisplatin and its recovery by 2-mercaptoethanol in human squamous cell carcinoma cells. Anticancer Drugs 10(2):203–211

    Article  CAS  PubMed  Google Scholar 

  • Sanabria ER, Wozniak KM, Slusher BS, Keller A (2004) GCP II (NAALADase) inhibition suppresses mossy fiber-CA3 synaptic neurotransmission by a presynaptic mechanism. J Neurophysiol 91:182–193

    Article  PubMed  Google Scholar 

  • Sima AAF (2003) New insights into the metabolic and molecular basis for diabetic neuropathy. Cell Mol Life Sci 60:2445–2464

    Article  CAS  PubMed  Google Scholar 

  • Slusher BS, Vornov JJ, Thomas AG, Hurn PD, Harukuni I, Bhardwaj A (1999) Selective inhibition of NAALADase, which converts NAAG to glutamate, reduces ischemic brain injury. Nat Med 5:1396–1402

    Article  CAS  PubMed  Google Scholar 

  • Tang Z, Lapidus RG, Wozniak KM, Scher HI, Slusher BS (2005) 2-MPPA, a selective inhibitor of Prostate Specific Membrane Antigen (PSMA), attenuates taxol-induced neuropathy in mice. 2005 American Association for Cancer Research (AACR) meeting, Anaheim, CA, USA

  • Thomas AG, Vornov JJ, Olkowski JL, Merion AT, Slusher BS (2000) N-Acetylated alpha-linked acidic dipeptidase converts N-acetyl-aspartyl-glutamate from a neuroprotectant to a neurotoxin. J Pharmacol Exp Ther 295:16–22

    CAS  PubMed  Google Scholar 

  • Thomas AG, Liu W, Olkowski JL, Tang Z, Lin Q, Lu XC, Slusher BS (2001) Neuroprotection mediated by glutamate carboxypeptidase II (NAALADase) inhibition requires TGF-β. Eur J Pharmacol 430:33–40

    Article  CAS  PubMed  Google Scholar 

  • Thomas AG, Wozniak KM, Tsukamoto T, Calvin D, Wu Y, Rojas C, Vornov J, Slusher BS (2006) Glutamate carboxypeptidase II (NAALADase) inhibition as a novel therapeutic strategy. Adv Exp Med Biol 576:327–337

    Article  CAS  PubMed  Google Scholar 

  • Tredici G, Braga M, Nicolini G, Miloso M, Marmiroli P, Schenone A, Nobbio L, Frattola L, Cavaletti G (1999) Effect of recombinant human nerve growth factor on cisplatin neurotoxicity in rats. Exp Neurol 159:551–558

    Article  CAS  PubMed  Google Scholar 

  • Urazaev AK, Grossfeld RM, Fletcher PS, Speno H, Gafurov BS, Buttram JG (2001) Synthesis and release of N-acetyl-aspartyl-glutamate (NAAG) by crayfish nerve fibers: implications for axon-glia signaling. Neuroscience 107:697–703

    Article  CAS  PubMed  Google Scholar 

  • van der Post SJ, de Visser ML, de Kam M, Woelfler DC, Hilt C, Vornov J, Burak ES, Bortey E, Slusher BS, Limsakun T, Cohen AF, van Gerven JM (2005) The central nervous system effects, pharmacokinetics and safety of the NAALADase-inhibitor GPI 5693. Br J Clin Pharmacol 60(2):128–136

    Article  PubMed  CAS  Google Scholar 

  • Vincent AM, Mohammad Y, Ahmad I, Greenberg R, Maiese K (1997) Metabotropic glutamate receptors prevent nitric oxide-induced programmed cell death. J Neurosci Res 50:549–564

    Article  CAS  PubMed  Google Scholar 

  • Westbrook GL, Mayer ML, Manboodiri MA, Neale JH (1986) High concentrations of N-acetyl-aspartyl-glutamate (NAAG) selectively activates NMDA receptors on mouse spinal cord neurons in cell culture. J Neurosci 6:3385–3392

    CAS  PubMed  Google Scholar 

  • Windebank AJ (1999) Chemotherapeutic neuropathy. Curr Opin Neurol 12(5):565–571

    Article  CAS  PubMed  Google Scholar 

  • Wroblewska B, Wroblewska JT, Saab OH, Neale JH (1993) N-Acetyl-aspartyl-glutamate inhibits forskolin-stimulated cyclic AMP levels via a metabotropic glutamate receptor in cultured cerebellar granule cells. J Neurochem 61(3):943–948

    Article  CAS  PubMed  Google Scholar 

  • Wroblewska B, Wroblewska JT, Pshenichkia S, Surin A, Sullivan SH, Neale JH (1997) N-Acetyl-aspartyl-glutamate selectively activates mGluR3 receptors in transfected cells. J Neurochem 69:174–181

    Article  CAS  PubMed  Google Scholar 

  • Wroblewska B, Santi MR, Neale JH (1998) N-Acetyl-aspartyl-glutamate activates cyclic AMP-coupled metabotropic glutamate receptors in cerebellar astrocytes. Glia 24(2):172–179

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Nozalis-Tagushi N, Sakashita Y (2001) Inhibition of spinal N-acetyl-alpha-linked acidic dipeptidase produces an antinociceptive effect in the rat formalin test. Neuroscience 102:473–479

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Saito O, Aoe T, Bartolozzi A, Sarva J, Zhou J, Kozikowski A, Wroblewska B, Bzdega T, Neale JH (2007) Local administration of N-acetyl-aspartyl-glutamate (NAAG) peptidase inhibitors is analgesic in peripheral pain in rats. Eur J Neurosci 25(1):147–158

    Article  PubMed  Google Scholar 

  • Zhang W, Slusher B, Murakawa Y, Wozniak KM, Tsukamoto T, Jackson PF, Sima AA (2002) GCPII (NAALADase) inhibition prevents long-term diabetic neuropathy in type 1 diabetic BB/Wor rats. J Neurol Sci 194:21–28

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Murakawa Y, Wozniak KM, Slusher BS, Sima AA (2006) The preventive and therapeutic effects of GCPII (NAALADase) inhibition on painful and sensory diabetic neuropathy. J Neurol Sci 247:217–223

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Ramadan E, Cappiello M, Wroblewska B, Bzdega T, Neale JH (2001) NAAG inhibits [3H]-GABA release from cortical neurons via the type 3 metabotropic glutamate receptor. Eur J Neurosci 13:340–346

    CAS  PubMed  Google Scholar 

  • Zhong C, Zhao X, Van KC, Bzdega T, Smyth A, Zhou J, Kozikowski AP, Jiang J, O’Connor WT, Berman RF, Neale JH, Lyeth BG (2006) NAAG peptidase inhibitor increases dialysate NAAG and reduces glutamate, aspartate and GABA levels in the dorsal hippocampus following fluid percussion injury in the rat. J Neurochem 97(4):1015–1025

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Neale JH, Pomper MG, Kozikowski AP (2005) NAAG peptidase inhibitors and their potential for diagnosis and therapy. Nat Rev Drug Discov 4(12):1015–1026

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported partially by an unrestricted research grant by “Fondazione Banca del Monte di Lombardia” (Guido Cavaletti).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina A. Carozzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carozzi, V.A., Chiorazzi, A., Canta, A. et al. Glutamate Carboxypeptidase Inhibition Reduces the Severity of Chemotherapy-Induced Peripheral Neurotoxicity in Rat. Neurotox Res 17, 380–391 (2010). https://doi.org/10.1007/s12640-009-9114-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9114-1

Keywords

Navigation