Skip to main content

Advertisement

Log in

Lipoteichoic Acid Induces Matrix Metalloproteinase-9 Expression via Transactivation of PDGF Receptors and NF-κB Activation in Rat Brain Astrocytes

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Bacterial infections have been shown to be involved in several inflammatory diseases such as brain inflammation. A major factor for these findings is due to the secretion of pro-inflammatory mediators by host cells triggered by the components released from the bacteria. Among these components, lipoteichoic acid (LTA), a component of Gram-positive bacterial cell wall, has been found to be elevated in cerebrospinal fluid of patients suffering from meningitis. Moreover, increased plasma levels of matrix metalloproteinases (MMPs), in particular MMP-9, have been observed in patients with brain inflammatory diseases and may contribute to disease pathology. However, the molecular mechanisms underlying LTA-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells) remain poorly defined. Here, the data with zymographic, Western blotting, RT-PCR, and immunofluorescent staining analyses showed that LTA induced MMP-9 expression and activation via a TLR2-activated c-Src-dependent transactivation of PDGFR pathway. Transactivation of PDGFR led to activation of PI3K/Akt and p42/p44 MAPK and then activated the IKK/NF-κB cascade. The activated-NF-κB translocated into nucleus which bound to κB-binding site of MMP-9 promoter, and thereby turned on transcription of MMP-9. Eventually, upregulation of MMP-9 by LTA enhanced cell migration of astrocytes. Taken together, these results suggested that in RBA-1 cells, activation of NF-κB by a c-Src-dependent PI3K/Akt-p42/p44 MAPK activation mediated through transactivation of PDGFR is essential for MMP-9 gene upregulation induced by LTA. Understanding the regulation of MMP-9 expression and functional changes by LTA/TLR system on astrocytes may provide potential therapeutic targets of Gram-positive bacterial infection in brain disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aoki T, Sumii T, Mori T, Wang X, Lo EH (2002) Blood-brain barrier disruption and matrix metalloproteinase-9 expression during reperfusion injury: mechanical versus embolic focal ischemia in spontaneously hypertensive rats. Stroke 33:2711–2717

    Article  PubMed  Google Scholar 

  • Bowman CC, Rasley A, Tranguch SL, Marriott I (2003) Cultured astrocytes express toll-like receptors for bacterial products. Glia 43:281–291

    Article  PubMed  Google Scholar 

  • Bsibsi M, Bajramovic JJ, Van Duijvenvoorden E, Persoon C, Ravid R, Van Noort JM, Vogt MH (2007) Identification of soluble CD14 as an endogenous agonist for Toll-like receptor 2 on human astrocytes by genome-scale functional screening of glial cell derived proteins. Glia 55:473–482

    Article  PubMed  Google Scholar 

  • Cario E, Gerken G, Podolsky DK (2007) Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 132:1359–1374

    Article  CAS  PubMed  Google Scholar 

  • Carpentier PA, Duncan DS, Miller SD (2008) Glial toll-like receptor signaling in central nervous system infection and autoimmunity. Brain Behav Immun 22:140–147

    Article  CAS  PubMed  Google Scholar 

  • De Alvaro C, Teruel T, Hernandez R, Lorenzo M (2004) Tumor necrosis factor alpha produces insulin resistance in skeletal muscle by activation of inhibitor κB kinase in a p38 MAPK-dependent manner. J Biol Chem 279:17070–17078

    Article  PubMed  Google Scholar 

  • De Keyser J, Mostert JP, Koch MW (2008) Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 267:3–16

    Article  PubMed  Google Scholar 

  • Doran KS, Engelson EJ, Khosravi A, Maisey HC, Fedtke I, Equils O, Michelsen KS, Arditi M, Peschel A, Nizet V (2005) Blood-brain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid. J Clin Invest 115:2499–2507

    Article  CAS  PubMed  Google Scholar 

  • Eberhardt W, Schulze M, Engels C, Klasmeier E, Pfeilschifter J (2002) Glucocorticoid-mediated suppression of cytokine-induced matrix metalloproteinase-9 expression in rat mesangial cells: involvement of nuclear factor-κB and Ets transcription factors. Mol Endocrinol 16:1752–1766

    Article  CAS  PubMed  Google Scholar 

  • Esen N, Tanga FY, DeLeo JA, Kielian T (2004) Toll-like receptor 2 (TLR2) mediates astrocyte activation in response to the Gram-positive bacterium Staphylococcus aureus. J Neurochem 88:746–758

    Article  CAS  PubMed  Google Scholar 

  • Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28:138–145

    Article  CAS  PubMed  Google Scholar 

  • Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273:18623–18632

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Hayden MS (2008) New regulators of NF-κB in inflammation. Nat Rev Immunol 8:837–848

    Article  CAS  PubMed  Google Scholar 

  • Harris JE, Nuttall RK, Elkington PT, Green JA, Horncastle DE, Graeber MB, Edwards DR, Friedland JS (2007) Monocyte-astrocyte networks regulate matrix metalloproteinase gene expression and secretion in central nervous system tuberculosis in vitro and in vivo. J Immunol 178:1199–1207

    CAS  PubMed  Google Scholar 

  • Hsieh HL, Yen MH, Jou MJ, Yang CM (2004) Intracellular signalings underlying bradykinin-induced matrix metalloproteinase-9 expression in rat brain astrocyte-1. Cell Signal 16:1163–1176

    Article  CAS  PubMed  Google Scholar 

  • Hsieh HL, Wu CY, Yang CM (2008) Bradykinin induces matrix metalloproteinase-9 expression and cell migration through a PKC-δ-dependent ERK/Elk-1 pathway in astrocytes. Glia 56:619–632

    Article  PubMed  Google Scholar 

  • Huang TT, Feinberg SL, Suryanarayanan S, Miyamoto S (2002) The zinc finger domain of NEMO is selectively required for NF-κB activation by UV radiation and topoisomerase inhibitors. Mol Cell Biol 22:5813–5825

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Jacobson K, Schaller MD (2004) MAP kinases and cell migration. J Cell Sci 117:4619–4628

    Article  CAS  PubMed  Google Scholar 

  • Into T, Kanno Y, Dohkan J, Nakashima M, Inomata M, Shibata K, Lowenstein CJ, Matsushita K (2007) Pathogen recognition by Toll-like receptor 2 activates Weibel-Palade body exocytosis in human aortic endothelial cells. J Biol Chem 282:8134–8141

    Article  CAS  PubMed  Google Scholar 

  • Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175:4320–4330

    CAS  PubMed  Google Scholar 

  • Jou TC, Jou MJ, Chen JY, Lee SY (1985) Properties of rat brain astrocytes in long-term culture. Taiwan Yi Xue Hui Za Zhi 84:865–881

    CAS  PubMed  Google Scholar 

  • Kam AY, Liu AM, Wong YH (2007) Formyl peptide-receptor like-1 requires lipid raft and extracellular signal-regulated protein kinase to activate inhibitor-κB kinase in human U87 astrocytoma cells. J Neurochem 103:1553–1566

    Article  CAS  PubMed  Google Scholar 

  • Kao SJ, Lei HC, Kuo CT, Chang MS, Chen BC, Chang YC, Chiu WT, Lin CH (2005) Lipoteichoic acid induces nuclear factor-κB activation and nitric oxide synthase expression via phosphatidylinositol 3-kinase, Akt, and p38 MAPK in RAW 264.7 macrophages. Immunology 115:366–374

    Article  CAS  PubMed  Google Scholar 

  • Kielian T, Esen N, Bearden ED (2005) Toll-like receptor 2 (TLR2) is pivotal for recognition of S. aureus peptidoglycan but not intact bacteria by microglia. Glia 49:567–576

    Article  PubMed  Google Scholar 

  • Kim D, Kim S, Koh H, Yoon SO, Chung AS, Cho KS, Chung J (2001) Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. FASEB J 15:1953–1962

    Article  CAS  PubMed  Google Scholar 

  • Kinsner A, Pilotto V, Deininger S, Brown GC, Coecke S, Hartung T, Bal-Price A (2005) Inflammatory neurodegeneration induced by lipoteichoic acid from Staphylococcus aureus is mediated by glia activation, nitrosative and oxidative stress, and caspase activation. J Neurochem 95:1132–1143

    Article  CAS  PubMed  Google Scholar 

  • Krasowska-Zoladek A, Banaszewska M, Kraszpulski M, Konat GW (2007) Kinetics of inflammatory response of astrocytes induced by TLR 3 and TLR4 ligation. J Neurosci Res 85:205–212

    Article  CAS  PubMed  Google Scholar 

  • Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84:359–369

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Lee S (2002) Toll-like receptors and inflammation in the CNS. Curr Drug Targets Inflamm Allergy 1:181–191

    Article  CAS  PubMed  Google Scholar 

  • Lee WJ, Shin CY, Yoo BK, Ryu JR, Choi EY, Cheong JH, Ryu JH, Ko KH (2003) Induction of matrix metalloproteinase-9 (MMP-9) in lipopolysaccharide-stimulated primary astrocytes is mediated by extracellular signal-regulated protein kinase 1/2 (Erk1/2). Glia 41:15–24

    Article  PubMed  Google Scholar 

  • Lehnardt S, Henneke P, Lien E, Kasper DL, Volpe JJ, Bechmann I, Nitsch R, Weber JR, Golenbock DT, Vartanian T (2006) A mechanism for neurodegeneration induced by group B streptococci through activation of the TLR2/MyD88 pathway in microglia. J Immunol 177:583–592

    CAS  PubMed  Google Scholar 

  • Liew FY, Xu D, Brint EK, O’Neill LA (2005) Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol 5:446–458

    Article  CAS  PubMed  Google Scholar 

  • Mantuano E, Inoue G, Li X, Takahashi K, Gaultier A, Gonias SL, Campana WM (2008) The hemopexin domain of matrix metalloproteinase-9 activates cell signaling and promotes migration of schwann cells by binding to low-density lipoprotein receptor-related protein. J Neurosci 28:11571–11582

    Article  CAS  PubMed  Google Scholar 

  • McColl BW, Rothwell NJ, Allan SM (2008) Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci 28:9451–9462

    Article  CAS  PubMed  Google Scholar 

  • Milenkovic I, Weick M, Wiedemann P, Reichenbach A, Bringmann A (2003) P2Y receptor-mediated stimulation of Muller glial cell DNA synthesis: dependence on EGF and PDGF receptor transactivation. Invest Ophthalmol Vis Sci 44:1211–1220

    Article  PubMed  Google Scholar 

  • Mitchell JA, Paul-Clark MJ, Clarke GW, McMaster SK, Cartwright N (2007) Critical role of toll-like receptors and nucleotide oligomerisation domain in the regulation of health and disease. J Endocrinol 193:323–330

    Article  CAS  PubMed  Google Scholar 

  • Mullaly SC, Kubes P (2006) The role of TLR2 in vivo following challenge with Staphylococcus aureus and prototypic ligands. J Immunol 177:8154–8163

    CAS  PubMed  Google Scholar 

  • Nguyen MD, Julien JP, Rivest S (2002) Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 3:216–227

    Article  CAS  PubMed  Google Scholar 

  • O’Neill LA (2008) Primer: Toll-like receptor signaling pathways—what do rheumatologists need to know? Nat Clin Pract Rheumatol 4:319–327

    Article  PubMed  Google Scholar 

  • Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB (1999) NF-κB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401:82–85

    Article  CAS  PubMed  Google Scholar 

  • Romashkova JA, Makarov SS (1999) NF-κB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401:86–90

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg GA (2002) Matrix metalloproteinases in neuroinflammation. Glia 39:279–291

    Article  PubMed  Google Scholar 

  • Sacre SM, Andreakos E, Kiriakidis S, Amjadi P, Lundberg A, Giddins G, Feldmann M, Brennan F, Foxwell BM (2007) The Toll-like receptor adaptor proteins MyD88 and Mal/TIRAP contribute to the inflammatory and destructive processes in a human model of rheumatoid arthritis. Am J Pathol 170:518–525

    Article  CAS  PubMed  Google Scholar 

  • Sadik CD, Hunfeld KP, Bachmann M, Kraiczy P, Eberhardt W, Brade V, Pfeilschifter J, Muhl H (2008) Systematic analysis highlights the key role of TLR2/NF-κB/MAP kinase signaling for IL-8 induction by macrophage-like THP-1 cells under influence of Borrelia burgdorferi lysates. Int J Biochem Cell Biol 40:2508–2521

    Article  CAS  PubMed  Google Scholar 

  • Saez-Llorens X, McCracken GH Jr (2003) Bacterial meningitis in children. Lancet 361:2139–2148

    Article  PubMed  Google Scholar 

  • Scarborough M, Thwaites GE (2008) The diagnosis and management of acute bacterial meningitis in resource-poor settings. Lancet Neurol 7:637–648

    Article  PubMed  Google Scholar 

  • Schroder NW, Morath S, Alexander C, Hamann L, Hartung T, Zahringer U, Gobel UB, Weber JR, Schumann RR (2003) Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem 278:15587–15594

    Article  PubMed  Google Scholar 

  • Souza LF, Jardim FR, Sauter IP, Souza MM, Barreto F, Margis R, Bernard EA (2009) Lipoteichoic acid from Staphylococcus aureus increases matrix metalloproteinase 9 expression in RAW 264.7 macrophages: modulation by A2A and A2B adenosine receptors. Mol Immunol 46:937–942

    Article  PubMed  Google Scholar 

  • Sutcliffe IC, Shaw N (1991) Atypical lipoteichoic acids of gram-positive bacteria. J Bacteriol 173:7065–7069

    CAS  PubMed  Google Scholar 

  • Svedin P, Hagberg H, Savman K, Zhu C, Mallard C (2007) Matrix metalloproteinase-9 gene knock-out protects the immature brain after cerebral hypoxia-ischemia. J Neurosci 27:1511–1518

    Article  CAS  PubMed  Google Scholar 

  • Tai KY, Shieh YS, Lee CS, Shiah SG, Wu CW (2008) Axl promotes cell invasion by inducing MMP-9 activity through activation of NF-κB and Brg-1. Oncogene 27:4044–4055

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang HH, Hsieh HL, Wu CY, Sun CC, Yang CM (2009) Oxidized low-density lipoprotein induces matrix metalloproteinase-9 expression via a p42/p44 and JNK-dependent AP-1 pathway in brain astrocytes. Glia 57:24–38

    Article  PubMed  Google Scholar 

  • Wu CY, Hsieh HL, Jou MJ, Yang CM (2004) Involvement of p42/p44 MAPK, p38 MAPK, JNK and nuclear factor-κB in interleukin-1beta-induced matrix metalloproteinase-9 expression in rat brain astrocytes. J Neurochem 90:1477–1488

    Article  CAS  PubMed  Google Scholar 

  • Wu CY, Hsieh HL, Sun CC, Tseng CP, Yang CM (2008) IL-1β induces proMMP-9 expression via c-Src-dependent PDGFR/PI3K/Akt/p300 cascade in rat brain astrocytes. J Neurochem 105:1499–1512

    Article  CAS  PubMed  Google Scholar 

  • Yarbro JW (1992) Mechanism of action of hydroxyurea. Semin Oncol 19:1–10

    CAS  PubMed  Google Scholar 

  • Yoon SO, Park SJ, Yoon SY, Yun CH, Chung AS (2002) Sustained production of H2O2 activates pro-matrix metalloproteinase-2 through receptor tyrosine kinases/phosphatidylinositol 3-kinase/NF-κB pathway. J Biol Chem 277:30271–30282

    Article  CAS  PubMed  Google Scholar 

  • Ziegler G, Harhausen D, Schepers C, Hoffmann O, Rohr C, Prinz V, Konig J, Lehrach H, Nietfeld W, Trendelenburg G (2007) TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochem Biophys Res Commun 359:574–579

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors appreciate Dr. C.C. Chen (Department of Pharmacology, National Taiwan University, Taipei, Taiwan), Dr. J. Han (Department of Immunology, The Scripps Research Institute, La Jolla, CA), Dr. R. Lee (Section of Immunology, Yale School of Medicine, New Haven, CT), Dr. K.L. Guan (Department of Biological Chemistry, University of Michigan, MI), Dr. M.H. Cobb (Department of Pharmacology, University of Texas Southwestern Medical Center, TX), Dr. R.D. Yeh (Department of Pharmacology, University of Illinois at Chicago), and Dr. C.P. Tseng (Department of Medical Biotechnology and Laboratory Science, University of Chang Gung) for providing dominant negative mutants of c-Src (K295M), TLR2, MyD88, MEK1/2 (MEK K97R), ERK1, Akt, and EGFR shRNA, respectively. This work was supported by grants from NSC95-2320-B-182-047-MY3, NSC95-2320-B-182-010, NSC97-2321-B-182-007, CMRPF170021, CMRPD150313, CMRPD140253, CMRPD150253, and CMRPD170491.

Conflict of Interest Statement

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuen-Mao Yang.

Additional information

Hsi-Lung Hsieh and Hui-Hsin Wang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, HL., Wang, HH., Wu, CY. et al. Lipoteichoic Acid Induces Matrix Metalloproteinase-9 Expression via Transactivation of PDGF Receptors and NF-κB Activation in Rat Brain Astrocytes. Neurotox Res 17, 344–359 (2010). https://doi.org/10.1007/s12640-009-9111-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9111-4

Keywords

Navigation