Skip to main content

Advertisement

Log in

IL-1β Induces MMP-9-Dependent Brain Astrocytic Migration via Transactivation of PDGF Receptor/NADPH Oxidase 2-Derived Reactive Oxygen Species Signals

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Matrix metalloproteinase-9 (MMP-9) plays a crucial role in pathological processes of brain inflammation, injury, and neurodegeneration. Moreover, cytokines such as interleukin-1β (IL-1β) induce expression of several inflammatory mediators in brain astrocytes, which may be important for brain inflammatory disorders. Recent studies have implicated that increased oxidative stress may contribute to the brain injury and inflammation. However, whether IL-1β-induced MMP-9 expression mediated through oxidative stress remains unclear. Therefore, we investigated the role of redox signals in IL-1β-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells). Herein, we first demonstrated that reactive oxygen species (ROS) play a crucial role in ILβ-induced MMP-9 expression by zymography, real-time PCR, and ROS staining in cultured RBA-1 cells. Next, IL-1β-induced MMP-9 expression is mediated through a c-Src-mediated transactivation of PDGFR/PI3K/Akt cascade linking to p47phox/NADPH oxidase 2 (Nox2)/ROS signaling pathway. Nox2-dependent ROS generation led to activation of MAPKs and the downstream transcription factors NF-κB and AP-1 (i.e., ATF2), which enhanced MMP-9 promoter activity, and thereby turned on transcription of MMP-9 gene. Functionally, IL-1β-induced MMP-9 expression promoted astrocytic migration. These results demonstrated that in RBA-1 cells, activation of NF-κB and AP-1 (ATF2) by the c-Src/PDGFR/PI3K/Akt-mediated Nox2/ROS/MAPKs signals is required for upregulation of MMP-9 and cell migration enhanced by IL-1β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yong VW, Krekoski CA, Forsyth PA, Bell R, Edwards DR (1998) Matrix metalloproteinases and diseases of the CNS. Trends Neurosci 21:75–80

    Article  CAS  PubMed  Google Scholar 

  2. Dollery CM, McEwan JR, Henney AM (1995) Matrix metalloproteinases and cardiovascular disease. Circ Res 77:863–868

    Article  CAS  PubMed  Google Scholar 

  3. Yong VW, Power C, Forsyth P, Edwards DR (2001) Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2:502–511

    Article  CAS  PubMed  Google Scholar 

  4. Gottschall PE, Yu X (1995) Cytokines regulate gelatinase A, B (matrix metalloproteinase 2 and 9) activity in cultured rat astrocytes. J Neurochem 64:1513–1520

    Article  CAS  PubMed  Google Scholar 

  5. Lee WJ, Shin CY, Yoo BK, Ryu JR, Choi EY, Cheong JH, Ryu JH, Ko KH (2003) Induction of matrix metalloproteinase-9 (MMP-9) in lipopolysaccharide-stimulated primary astrocytes is mediated by extracellular signal-regulated protein kinase 1/2 (Erk1/2). Glia 41:15–24

    Article  PubMed  Google Scholar 

  6. Korzus E, Nagase H, Rydell R, Travis J (1997) The mitogen-activated protein kinase and JAK-STAT signaling pathways are required for an oncostatin M-responsive element-mediated activation of matrix metalloproteinase 1 gene expression. J Biol Chem 272:1188–1196

    Article  CAS  PubMed  Google Scholar 

  7. Wu CY, Hsieh HL, Jou MJ, Yang CM (2004) Involvement of p42/p44 MAPK, p38 MAPK, JNK and nuclear factor-κB in interleukin-1binduced matrix metalloproteinase-9 expression in rat brain astrocytes. J Neurochem 90:1477–1488

    Article  CAS  PubMed  Google Scholar 

  8. Rothwell N (2003) Interleukin-1 and neuronal injury: Mechanisms, modification, and therapeutic potential. Brain Behav Immun 17:152–157

    Article  PubMed  Google Scholar 

  9. Allan SM, Tyrrell PJ, Rothwell NJ (2005) Interleukin-1 and neuronal injury. Nat Rev Immunol 5:629–640

    Article  CAS  PubMed  Google Scholar 

  10. Fassbender K, Rossol S, Kammer T, Daffertshofer M, Wirth S, Dollman M, Hennerici M (1994) Proinflammatory cytokines in serum of patients with acute cerebral ischemia: kinetics of secretion and relation to the extent of brain damage and outcome of disease. J Neurol Sci 122:135–139

    Article  CAS  PubMed  Google Scholar 

  11. Dinarello CA (1997) Interleukin-1. Cytokine Growth Factor Rev 8:253–265

    Article  CAS  PubMed  Google Scholar 

  12. Wu CY, Hsieh HL, Sun CC, Tseng CP, Yang CM (2008) IL-1β induces proMMP-9 expression via c-Src-dependent PDGFR/PI3K/Akt/p300 cascade in rat brain astrocytes. J Neurochem 105:1499–1512

    Article  CAS  PubMed  Google Scholar 

  13. Demchenko IT, Oury TD, Crapo JD, Piantadosi CA (2002) Regulation of the brain’s vascular responses to oxygen. Circ Res 91:1031–1037

    Article  CAS  PubMed  Google Scholar 

  14. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  15. Chrissobolis S, Faraci FM (2008) The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends Mol Med 14:495–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kamata H, Hirata H (1999) Redox regulation of cellular signalling. Cell Signal 11:1–14

    Article  CAS  PubMed  Google Scholar 

  17. Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14

    Article  CAS  PubMed  Google Scholar 

  18. Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B, Liu B, Hong JS (2004) NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem 279:1415–1421

    Article  CAS  PubMed  Google Scholar 

  19. Chiang WC, Chien CT, Lin WW, Lin SL, Chen YM, Lai CF, Wu KD, Chao J, Tsai TJ (2006) Early activation of bradykinin B2 receptor aggravates reactive oxygen species generation and renal damage in ischemia/reperfusion injury. Free Radic Biol Med 41:1304–1314

    Article  CAS  PubMed  Google Scholar 

  20. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescein as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  CAS  PubMed  Google Scholar 

  21. Bindokas VP, Jordan J, Lee CC, Miller RJ (1996) Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J Neurosci 168:1324–1336

    Google Scholar 

  22. Reinehr R, Görg B, Becker S, Qvartskhava N, Bidmon HJ, Selbach O, Haas HL, Schliess F, Häussinger D (2007) Hypoosmotic swelling and ammonia increase oxidative stress by NADPH oxidase in cultured astrocytes and vital brain slices. Glia 55:758–771

    Article  PubMed  Google Scholar 

  23. Eberhardt W, Schulze M, Engels C, Klasmeier E, Pfeilschifter J (2002) Glucocorticoid-mediated suppression of cytokine-induced matrix metalloproteinase-9 expression in rat mesangial cells: involvement of nuclear factor-κB and Ets transcription factors. Mol Endocrinol 16:1752–1766

    Article  CAS  PubMed  Google Scholar 

  24. Hsieh HL, Wu CY, Yang CM (2008) Bradykinin induces matrix metalloproteinase-9 expression and cell migration through a PKC-δ-dependent ERK/Elk-1 pathway in astrocytes. Glia 56:619–632

    Article  PubMed  Google Scholar 

  25. Nelson KK, Melendez JA (2004) Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 37:768–784

    Article  CAS  PubMed  Google Scholar 

  26. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  27. Lin CC, Hsieh HL, Shih RH, Chi PL, Cheng SE, Chen JC, Yang CM (2012) NADPH oxidase 2-derived reactive oxygen species signal contributes to bradykinin-induced matrix metalloproteinase-9 expression and cell migration in brain astrocytes. Cell Commun Signal 10:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hsieh HL, Yen MH, Jou MJ, Yang CM (2004) Intracellular signalings underlying bradykinin-induced matrix metalloproteinase-9 expression in rat brain astrocyte-1. Cell Signal 16:1163–1176

    Article  CAS  PubMed  Google Scholar 

  29. Lin CW, Shen SC, Chien CC, Yang LY, Shia LT, Chen YC (2010) 12-O-tetradecanoylphorbol-13-acetate-induced invasion/migration of glioblastoma cells through activating PKCα/ERK/NF-κB-dependent MMP-9 expression. J Cell Physiol 225:472–481

    Article  CAS  PubMed  Google Scholar 

  30. Wang HH, Hsieh HL, Wu CY, Sun CC, Yang CM (2009) Oxidized low-density lipoprotein induces matrix metalloproteinase-9 expression via a p42/p44 and JNK-dependent AP-1 pathway in brain astrocytes. Glia 57:24–38

    Article  PubMed  Google Scholar 

  31. Hsieh HL, Wang HH, Wu CY, Yang CM (2010) Reactive oxygen species-dependent c-Fos/activator protein 1 induction upregulates heme oxygenase-1 expression by bradykinin in brain astrocytes. Antioxid Redox Signal 13:1829–1844

    Article  CAS  PubMed  Google Scholar 

  32. Rosenberg GA (2002) Matrix metalloproteinases in neuroinflammation. Glia 39:279–291

    Article  PubMed  Google Scholar 

  33. Smith JA, Das A, Ray SK, Banik NL (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87:10–20

    Article  CAS  PubMed  Google Scholar 

  34. Hsieh HL, Wang HH, Wu WB, Chu PJ, Yang CM (2010) Transforming growth factor-β1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK- and JNK-NF-κB pathways. J Neuroinflammation 7:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Floyd RA (1999) Neuroinflammatory processes are important in neurodegenerative diseases: an hypothesis to explain the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development. Free Radic Biol Med 26:1346–1355

    Article  CAS  PubMed  Google Scholar 

  36. Infanger DW, Sharma RV, Davisson RL (2006) NADPH oxidases of the brain: distribution, regulation, and function. Antioxid Redox Signal 8:1583–1596

    Article  CAS  PubMed  Google Scholar 

  37. Siwik DA, Colucci WS (2004) Regulation of matrix metalloproteinases by cytokines and reactive oxygen/nitrogen species in the myocardium. Heart Fail Rev 9:43–51

    Article  CAS  PubMed  Google Scholar 

  38. Gianni D, Taulet N, Zhang H, DerMardirossian C, Kister J, Martinez L, Roush WR, Brown SJ, Bokoch GM, Rosen H (2010) A novel and specific NADPH oxidase-1 (Nox1) small-molecule inhibitor blocks the formation of functional invadopodia in human colon cancer cells. ACS Chem Biol 5:981–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stolk J, Hiltermann TJ, Dijkman JH, Verhoeven AJ (1994) Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am J Respir Cell Mol Biol 11:95–102

    Article  CAS  PubMed  Google Scholar 

  40. Petrônio MS, Zeraik ML, Fonseca LM, Ximenes VF (2013) Apocynin: chemical and biophysical properties of a NADPH oxidase inhibitor. Molecules 18:2821–2839

    Article  PubMed  Google Scholar 

  41. Abramov AY, Jacobson J, Wientjes F, Hothersall J, Canevari L, Duchen MRL (2005) Expression and modulation of an NADPH oxidase in mammalian astrocytes. J Neurosci 25:9176–9184

    Article  CAS  PubMed  Google Scholar 

  42. Kim SY, Lee JG, Cho WS, Cho KH, Sakong J, Kim JR, Chin BR, Baek SH (2010) Role of NADPH oxidase-2 in lipopolysaccharide-induced matrix metalloproteinase expression and cell migration. Immunol Cell Biol 88:197–204

    Article  CAS  PubMed  Google Scholar 

  43. Boureux A, Furstoss O, Simon V, Roche S (2005) Abl tyrosine kinase regulates a Rac/JNK and a Rac/Nox pathway for DNA synthesis and Myc expression induced by growth factors. J Cell Sci 118:3717–3726

    Article  CAS  PubMed  Google Scholar 

  44. Cheng SE, Lee IT, Lin CC, Kou YR, Yang CM (2010) Cigarette smoke particle-phase extract induces HO-1 expression in human tracheal smooth muscle cells: role of the c-Src/NADPH oxidase/MAPK/Nrf2 signaling pathway. Free Radic Biol Med 48:1410–1422

    Article  CAS  PubMed  Google Scholar 

  45. Tseng HY, Liu ZM, Huang HS (2012) NADPH oxidase-produced superoxide mediates EGFR transactivation by c-Src in arsenic trioxide-stimulated human keratinocytes. Arch Toxicol 86:935–945

    Article  CAS  PubMed  Google Scholar 

  46. Irving EA, Bamford M (2002) Role of mitogen- and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab 22:631–647

    Article  CAS  PubMed  Google Scholar 

  47. Wu WS (2006) The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 25:695–705

    Article  CAS  PubMed  Google Scholar 

  48. Koli K, Myllärniemi M, Keski-Oja J, Kinnula VL (2008) Transforming growth factor-β activation in the lung: focus on fibrosis and reactive oxygen species. Antioxid Redox Signal 10:333–342

    Article  CAS  PubMed  Google Scholar 

  49. Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription. FASEB J 10:709–720

    CAS  PubMed  Google Scholar 

  50. Roebuck KA (1999) Oxidant stress regulation of IL-8 and ICAM-1 gene expression: differential activation and binding of the transcription factors AP-1 and NF-κB (Review). Int J Mol Med 4:223–230

    CAS  PubMed  Google Scholar 

  51. Li M, Fukagawa NK (2010) Age-related changes in redox signaling and VSMC function. Antioxid Redox Signal 12:641–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee JG, Heur M (2013) Interleukin-1β enhances cell migration through AP-1 and NF-κB pathway-dependent FGF2 expression in human corneal endothelial cells. Biol Cell 105:175–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hsieh HL, Lin CC, Shih RH, Hsiao LD, Yang CM (2012) NADPH oxidase-mediated redox signal contributes to lipoteichoic acid-induced MMP-9 upregulation in brain astrocytes. J Neuroinflammation 9:110

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gottschall PE, Deb S (1996) Regulation of matrix metalloproteinase expressions in astrocytes, microglia and neurons. Neuroimmunomodulation 3:69–75

    Article  CAS  PubMed  Google Scholar 

  55. Ravindran J, Agrawal M, Gupta N, Rao PV (2011) Alteration of blood brain barrier permeability by T-2 toxin: role of MMP-9 and inflammatory cytokines. Toxicology 280:44–52

    Article  CAS  PubMed  Google Scholar 

  56. Gonzalez-Perez O, Gutierrez-Fernandez F, Lopez-Virgen V, Collas-Aguilar J, Quinones-Hinojosa A, Garcia-Verdugo JM (2012) Immunological regulation of neurogenic niches in the adult brain. Neuroscience 226:270–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Byun HJ, Hong IK, Kim E, Jin YJ, Jeoung DI, Hahn JH, Kim YM, Park SH, Lee H (2006) A splice variant of CD99 increases motility and MMP-9 expression of human breast cancer cells through the AKT-, ERK-, and JNK-dependent AP-1 activation signaling pathways. J Biol Chem 281:34833–34847

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Council, Taiwan; Grant number: NSC102-2321-B-182-011, NSC101-2320-B-182-039-MY3, NSC101-2314-B-182-182A-112, and NSC102-2320-B-255-005-MY3; Chang Gung Medical Research Foundation, Grant number: CMRPD1B0331, CMRPD1C0102, CMRPD1B0383, CMRPD1C0562, CMRPG3B1093, CMRPG3C1302, CMRPG5C0061, CMRPF1C0191, and CMRPF1A0063; and the Ministry of Education, Taiwan; Grant number: EMRPD1D0231 and EMRPD1D0241.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuen-Mao Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, CM., Hsieh, HL., Yu, PH. et al. IL-1β Induces MMP-9-Dependent Brain Astrocytic Migration via Transactivation of PDGF Receptor/NADPH Oxidase 2-Derived Reactive Oxygen Species Signals. Mol Neurobiol 52, 303–317 (2015). https://doi.org/10.1007/s12035-014-8838-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8838-y

Keywords

Navigation