Skip to main content

Advertisement

Log in

Effects of proNGF on Neuronal Viability, Neurite Growth and Amyloid-beta Metabolism

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

An Erratum to this article was published on 03 September 2011

Abstract

Alzheimer’s disease (AD) is characterized pathologically by the deposition of amyloid-β peptides (Aβ), neurofibrillary tangles, distinctive neuronal loss and neurite dystrophy. Nerve growth factor (NGF) has been suggested to be involved in the pathogenesis of AD, however, the role of its precursor (proNGF) in AD remains unknown. In this study, we investigated the effect of proNGF on neuron death, neurite growth and Aβ production, in vitro and in vivo. We found that proNGF promotes the death of different cell lines and primary neurons in culture, likely dependent on the expression of p75NTR. We for the first time found that proNGF has an opposite role in neurite growth to that of mature NGF, retarding neurite growth in both cell lines and primary neurons. proNGF is localized to the Aβ plaques in AD mice brain, however, it had no significant effect on Aβ production in vitro and in vivo. Our findings suggest that proNGF is an important factor involving AD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Shawi R, Hafner A, Chun S, Raza S, Crutcher K, Thrasivoulou C, Simons P, Cowen T (2007) ProNGF, sortilin, and age-related neurodegeneration. Ann NY Acad Sci 1119:208–215

    Article  CAS  PubMed  Google Scholar 

  • Al-Shawi R, Hafner A, Olsen J, Chun S, Raza S, Thrasivoulou C, Lovestone S, Killick R, Simons P, Cowen T (2008) Neurotoxic and neurotrophic roles of proNGF and the receptor sortilin in the adult and ageing nervous system. Eur J Neurosci 27:2103–2114

    Article  PubMed  Google Scholar 

  • Beattie MS, Harrington AW, Lee R, Kim JY, Boyce SL, Longo FM, Bresnahan JC, Hempstead BL, Yoon SO (2002) ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron 36:375–386

    Article  CAS  PubMed  Google Scholar 

  • Brewer GJ (1998) Age-related toxicity to lactate, glutamate, and beta-amyloid in cultured adult neurons. Neurobiol Aging 19:561–568

    Article  CAS  PubMed  Google Scholar 

  • Brewer GJ, Torricelli JR (2007) Isolation and culture of adult neurons and neurospheres. Nat Protoc 2:1490–1498

    Article  CAS  PubMed  Google Scholar 

  • Capsoni S, Ugolini G, Comparini A, Ruberti F, Berardi N, Cattaneo A (2000) Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice. Proc Natl Acad Sci USA 97:6826–6831

    Article  CAS  PubMed  Google Scholar 

  • Capsoni S, Giannotta S, Cattaneo A (2002a) Beta-amyloid plaques in a model for sporadic Alzheimer’s disease based on transgenic anti-nerve growth factor antibodies. Mol Cell Neurosci 21:15–28

    Article  CAS  PubMed  Google Scholar 

  • Capsoni S, Giannotta S, Cattaneo A (2002b) Nerve growth factor and galantamine ameliorate early signs of neurodegeneration in anti-nerve growth factor mice. Proc Natl Acad Sci USA 99:12432–12437

    Article  CAS  PubMed  Google Scholar 

  • Capsoni S, Giannotta S, Stebel M, Garcia AA, De Rosa R, Villetti G, Imbimbo BP, Pietra C, Cattaneo A (2004) Ganstigmine and donepezil improve neurodegeneration in AD11 antinerve growth factor transgenic mice. Am J Alzheimers Dis Other Demen 19:153–160

    Article  PubMed  Google Scholar 

  • Clewes O, Fahey MS, Tyler SJ, Watson JJ, Seok H, Catania C, Cho K, Dawbarn D, Allen SJ (2008) Human ProNGF: biological effects and binding profiles at TrkA, P75NTR and sortilin. J Neurochem 107:1124–1135

    CAS  PubMed  Google Scholar 

  • Coleman PD, Yao PJ (2003) Synaptic slaughter in Alzheimer’s disease. Neurobiol Aging 24:1023–1027

    Article  CAS  PubMed  Google Scholar 

  • Costantini C, Weindruch R, Della Valle G, Puglielli L (2005a) A TrkA-to-p75NTR molecular switch activates amyloid beta-peptide generation during aging. Biochem J 391:59–67

    Article  CAS  PubMed  Google Scholar 

  • Costantini C, Della-Bianca V, Formaggio E, Chiamulera C, Montresor A, Rossi F (2005b) The expression of p75 neurotrophin receptor protects against the neurotoxicity of soluble oligomers of beta-amyloid. Exp Cell Res 311:126–134

    Article  CAS  PubMed  Google Scholar 

  • Coulson EJ (2006) Does the p75 neurotrophin receptor mediate Abeta-induced toxicity in Alzheimer’s disease? J Neurochem 98:654–660

    Article  CAS  PubMed  Google Scholar 

  • Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190

    Article  CAS  PubMed  Google Scholar 

  • Domeniconi M, Hempstead BL, Chao MV (2007) Pro-NGF secreted by astrocytes promotes motor neuron cell death. Mol Cell Neurosci 34:271–279

    Article  CAS  PubMed  Google Scholar 

  • Fahnestock M, Michalski B, Xu B, Coughlin MD (2001) The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease. Mol Cell Neurosci 18:210–220

    Article  CAS  PubMed  Google Scholar 

  • Gibbs RB, Pfaff DW (1994) In situ hybridization detection of trkA mRNA in brain: distribution, colocalization with p75NGFR and up-regulation by nerve growth factor. J Comp Neurol 341:324–339

    Article  CAS  PubMed  Google Scholar 

  • Harrington AW, Leiner B, Blechschmitt C, Arevalo JC, Lee R, Morl K, Meyer M, Hempstead BL, Yoon SO, Giehl KM (2004) Secreted proNGF is a pathophysiological death-inducing ligand after adult CNS injury. Proc Natl Acad Sci USA 101:6226–6230

    Article  CAS  PubMed  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  CAS  PubMed  Google Scholar 

  • Huang BR, Gu JJ, Ming H, Lai DB, Zhou XF (2000) Differential actions of neurotrophins on apoptosis mediated by the low affinity neurotrophin receptor p75NTR in immortalised neuronal cell lines. Neurochem Int 36:55–65

    Article  CAS  PubMed  Google Scholar 

  • Kaplan DR, Miller FD (2003) Axon growth inhibition: signals from the p75 neurotrophin receptor. Nat Neurosci 6:435–436

    Article  CAS  PubMed  Google Scholar 

  • Kar S, Slowikowski SP, Westaway D, Mount HT (2004) Interactions between beta-amyloid and central cholinergic neurons: implications for Alzheimer’s disease. J Psychiatry Neurosci 29:427–441

    PubMed  Google Scholar 

  • Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948

    Article  CAS  PubMed  Google Scholar 

  • Lee HG, Casadesus G, Zhu X, Takeda A, Perry G, Smith MA (2004) Challenging the amyloid cascade hypothesis: senile plaques and amyloid-beta as protective adaptations to Alzheimer disease. Ann NY Acad Sci 1019:1–4

    Article  CAS  PubMed  Google Scholar 

  • Majd S, Rastegar K, Zarifkar A, Takhshid MA (2007) Fibrillar beta-amyloid (Abeta) (1–42) elevates extracellular Abeta in cultured hippocampal neurons of adult rats. Brain Res 1185:321–327

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS, Jacobsen C, Kliemannel M, Schwarz E, Willnow TE, Hempstead BL, Petersen CM (2004) Sortilin is essential for proNGF-induced neuronal cell death. Nature 427:843–848

    Article  CAS  PubMed  Google Scholar 

  • Pedraza CE, Podlesniy P, Vidal N, Arevalo JC, Lee R, Hempstead B, Ferrer I, Iglesias M, Espinet C (2005) Pro-NGF isolated from the human brain affected by Alzheimer’s disease induces neuronal apoptosis mediated by p75NTR. Am J Pathol 166:533–543

    CAS  PubMed  Google Scholar 

  • Peng S, Wuu J, Mufson EJ, Fahnestock M (2004) Increased proNGF levels in subjects with mild cognitive impairment and mild Alzheimer disease. J Neuropathol Exp Neurol 63:641–649

    CAS  PubMed  Google Scholar 

  • Petratos S, Li QX, George AJ, Hou X, Kerr ML, Unabia SE, Hatzinisiriou I, Maksel D, Aguilar MI, Small DH (2008) The beta-amyloid protein of Alzheimer’s disease increases neuronal CRMP-2 phosphorylation by a Rho-GTP mechanism. Brain 131:90–108

    Article  PubMed  Google Scholar 

  • Podlesniy P, Kichev A, Pedraza C, Saurat J, Encinas M, Perez B, Ferrer I, Espinet C (2006) Pro-NGF from Alzheimer’s disease and normal human brain displays distinctive abilities to induce processing and nuclear translocation of intracellular domain of p75NTR and apoptosis. Am J Pathol 169:119–131

    Article  CAS  PubMed  Google Scholar 

  • Sobottka B, Reinhardt D, Brockhaus M, Jacobsen H, Metzger F (2008) ProNGF inhibits NGF-mediated TrkA activation in PC12 cells. J Neurochem 107:1294–1303

    Article  CAS  PubMed  Google Scholar 

  • Sotthibundhu A, Sykes AM, Fox B, Underwood CK, Thangnipon W, Coulson EJ (2008) Beta-amyloid(1–42) induces neuronal death through the p75 neurotrophin receptor. J Neurosci 28:3941–3946

    Article  CAS  PubMed  Google Scholar 

  • Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS, Goldstein LS (2005) Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307:1282–1288

    Article  CAS  PubMed  Google Scholar 

  • Twiss JL, Chang JH, Schanen NC (2006) Pathophysiological mechanisms for actions of the neurotrophins. Brain Pathol 16:320–332

    Article  CAS  PubMed  Google Scholar 

  • Volosin M, Song W, Almeida RD, Kaplan DR, Hempstead BL, Friedman WJ (2006) Interaction of survival and death signaling in basal forebrain neurons: roles of neurotrophins and proneurotrophins. J Neurosci 26:7756–7766

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Dow KE, Riopelle RJ, Ross GM (2001) The common neurotrophin receptor p75NTR enhances the ability of PC12 cells to resist oxidative stress by a trkA-dependent mechanism. Neurotox Res 3:485–499

    Article  CAS  PubMed  Google Scholar 

  • Wang YJ, Zhou HD, Zhou XF (2006a) Clearance of amyloid-beta in Alzheimer’s disease: progress, problems and perspectives. Drug Discov Today 11:931–938

    Article  CAS  PubMed  Google Scholar 

  • Wang YJ, Pollard AN, Zhou HD, Zhong JH, Zhou XF (2006b) Characterization of an Alzheimer ‘s disease mouse model bearing mutant genes of amyloid precursor protein and human presenilin In: Proceeding of the Australian neuroscience society, p 150. Sydney

  • Wang YJ, Pollard A, Zhong JH, Dong XY, Wu XB, Zhou HD, Zhou XF (2009a) Intramuscular delivery of a single chain antibody gene reduces brain Abeta burden in a mouse model of Alzheimer’s disease. Neurobiol Aging 30:364–376

    Article  PubMed  Google Scholar 

  • Wang YJ, Thomas P, Zhong JH, Bi FF, Kosaraju S, Pollard A, Fenech M, Zhou XF (2009b) Consumption of grape seed extract prevents amyloid-beta deposition and attenuates inflammation in brain of an Alzheimer’s disease mouse. Neurotox Res 15:3–14

    Article  PubMed  Google Scholar 

  • Whitehouse PJ, Struble RG, Hedreen JC, Clark AW, White CL, Parhad IM, Price DL (1983) Neuroanatomical evidence for a cholinergic deficit in Alzheimer’s disease. Psychopharmacol Bull 19:437–440

    CAS  PubMed  Google Scholar 

  • Yamashita T, Tohyama M (2003) The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat Neurosci 6:461–467

    CAS  PubMed  Google Scholar 

  • Zhang Y, Hong Y, Bounhar Y, Blacker M, Roucou X, Tounekti O, Vereker E, Bowers WJ, Federoff HJ, Goodyer CG, LeBlanc A (2003) p75 neurotrophin receptor protects primary cultures of human neurons against extracellular amyloid beta peptide cytotoxicity. J Neurosci 23:7385–7394

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Ms. Jin-Xian Mi, Sheona Page in Flinders University for preparation of sheep anti-proNGF antibody, Dr. Moses Chao in New York University for providing rabbit antibody directed against p75 neurotrophin receptor. This project is supported by NHMRC grant (No. 480422, X. F. Zhou & Y. J. Wang). Y. J. Wang is supported by IPRS at Flinders University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Fu Zhou.

Additional information

Yan-Jiang Wang, Deborah Valadares and Ying Sun have contributed equally to this work.

An erratum to this article is available at http://dx.doi.org/10.1007/s12640-011-9270-y.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 100 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YJ., Valadares, D., Sun, Y. et al. Effects of proNGF on Neuronal Viability, Neurite Growth and Amyloid-beta Metabolism. Neurotox Res 17, 257–267 (2010). https://doi.org/10.1007/s12640-009-9098-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9098-x

Keywords

Navigation