Skip to main content
Log in

IGF-1 and pAKT Signaling Promote Hippocampal CA1 Neuronal Survival Following Injury to Dentate Granule Cells

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Insulin-like growth factor-1 (IGF-1) protects neurons from apoptosis and in vivo offers neuroprotective support to hippocampal CA1 pyramidal neurons following ischemia or seizure. IGF-1 signals through IGF-1 receptors activating phosphytidylinositol 3-kinase (PI3K)/Akt or pMAPK pathways. IGF-1 can be induced with injury and microglia and astrocytes may serve as a source of this neurotrophic factor to promote neuronal survival. An acute systemic injection of trimethyltin (TMT; 2 mg/kg, ip) to mice induces apoptosis of dentate granule neurons within 24 h and a differential response of microglia with ramified microglia present in the CA-1 region. Using this model, we studied the role of IGF-1 in the survival of CA-1 pyramidal neurons under conditions of altered synaptic input due to changes in the dentate gyrus. Within 24 h of injection, IGF-1 mRNA levels were elevated in the hippocampus and IGF-1 protein detected in both astrocytes and microglia. IGF-1 was redistributed within the CA-1 neurons corresponding with an increase in cytoplasmic pAkt, elevated PKBα/Akt protein levels, and a decrease in the antagonist, Rho. pMAPK was not detected in CA-1 neurons and ERK2 showed a transient decrease followed by a significant increase, suggesting a lack of recruitment of the pMAPK signaling pathway for neuronal survival. In mice deficient for IGF-1, a similar level of apoptosis was observed in dentate granule neurons as compared to wildtype; however, TMT induced a significant level CA-1 neuronal death, further supporting a role for IGF-1 in the survival of CA-1 neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aikin R, Rosenberg L, Maysinger D (2000) Phosphatidylinositol 3-kinase signaling to Akt mediates survival in isolated canine islets of langerhans. Biochem Biophys Res Commun 277:455–461

    Article  PubMed  CAS  Google Scholar 

  • Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15(23):6541–6551

    PubMed  CAS  Google Scholar 

  • Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591

    Article  PubMed  CAS  Google Scholar 

  • Ambrosini E, Aloisi F (2004) Chemokines and glial cells: a complex network in the central nervous system. Neurochem Res 29:1017–1038

    Article  PubMed  CAS  Google Scholar 

  • Balendran A, Casamayor A, Deak M, Paterson A, Gaffney P, Currie R, Downes CP, Alessi DR (1999) PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr Biol 9(8):393–404

    Article  PubMed  CAS  Google Scholar 

  • Bence-Hanulec KK, Marshall J, Blair LA (2000) Potentiation of neuronal L calcium channels by IGF-1 requires phosphorylation of the alpha1 subunit on a specific tyrosine residue. Neuron 27:121–131

    Article  PubMed  CAS  Google Scholar 

  • Blair LA, Marshall J (1997) IGF-1 modulates N and L calcium channels in a PI 3-kinase-dependent manner. Neuron 19:421–429

    Article  PubMed  CAS  Google Scholar 

  • Blair LA, Bence-Hanulec KK, Mehta S, Franke T, Kaplan D, Marshall J (1999) Akt-dependent potentiation of L channels by insulin-like growth factor-1 is required for neuronal survival. J Neurosci 19:1940–1951

    PubMed  CAS  Google Scholar 

  • Bondy C, Bach M, Lee W (1992) Mapping of brain insulin and insulin like growth factor receptor gene expression by in situ hybridization. NeuroProtocols 1:240–249

    Article  CAS  Google Scholar 

  • Borgatti P, Martelli AM, Bellacosa A, Casto R, Massari L, Capitani S, Neri LM (2000) Translocation of Akt/PKB to the nucleus of osteoblast-like MC3T3–E1 cells exposed to proliferative growth factors. FEBS Lett 477:27–32

    Article  PubMed  CAS  Google Scholar 

  • Bruccoleri A, Harry GJ (2000) Chemical-induced hippocampal neurodegeneration and elevations in TNFalpha, TNFbeta IL-1alpha, IP-10, and MCP-1 mRNA in osteopetrotic (op/op) mice. J Neurosci Res 62(1):146–155

    Article  PubMed  CAS  Google Scholar 

  • Bruccoleri A, Brown H, Harry GJ (1998) Cellular localization and temporal elevation of tumor necrosis factor-alpha, interleukin-1 alpha, and transforming growth factor-beta 1 mRNA in hippocampal injury response induced by trimethyltin. J Neurochem 71:1577–1587

    Article  PubMed  CAS  Google Scholar 

  • Butt AJ, Firth SM, Baxter RC (1999) The IGF axis and programmed cell death. Immunol Cell Biol 77(3):256–262

    Article  PubMed  CAS  Google Scholar 

  • Carson MJ, Bilousova TV, Puntambekar SS, Melchior B, Doose JM, Ethell IM (2007) A rose by any other name? The potential consequences of microglial heterogeneity during CNS health and disease. Neurotherapeutics 4:571–579

    Article  PubMed  CAS  Google Scholar 

  • Castellino RC, Durden DL (2007) Mechanisms of disease: the PI3K-Akt-PTEN signaling node—an intercept point for the control of angiogenesis in brain tumors. Nat Clin Pract Neurol 3:682–693

    Article  PubMed  CAS  Google Scholar 

  • Chang LW, Tiemeyer TM, Wenger GR, McMillan DE (1982) Neuropathology of mouse hippocampus in acute trimethyltin intoxication. Neurobehav Toxicol Teratol 4:149–156

    PubMed  CAS  Google Scholar 

  • Cheng B, Mattson MP (1992) IGF-1 and IGF-II protect cultured hippocampal and septal neurons against calcium-mediated hypoglycemic damage. J Neurosci 12:1558–1566

    PubMed  CAS  Google Scholar 

  • Choi SC, Kim SJ, Choi JH, Park CY, Shim WJ, Lim DS (2008a) Fibroblast growth factor-2 and -4 promote the proliferation of bone marrow mesenchymal stem cells by the activation of the PI3K-Akt and ERK1/2 signaling pathways. Stem Cells Dev 17(4):725–736

    Article  PubMed  CAS  Google Scholar 

  • Choi Y-S, Cho H-Y, Hoyt KR, Naegele JR, Obrietan K (2008b) IGF-1 receptor-mediated ERK/MAPK signaling couples status epilepticus to progenitor cell proliferation in the subgranular layer of the dentate gyrus. Glia 56:791–800

    Article  PubMed  Google Scholar 

  • Crowder RJ, Freeman RS (2000) Glycogen synthase kinase-3 beta activity is critical for neuronal death caused by inhibiting phosphatidylinositol 3-kinase or Akt but not for death caused by nerve growth factor withdrawal. J Biol Chem 275(44):34266–34271

    Article  PubMed  CAS  Google Scholar 

  • Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13(22):2905–2927

    Article  PubMed  CAS  Google Scholar 

  • Davalos D, Gruntzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:52–758

    Article  CAS  Google Scholar 

  • del Peso L, González-García M, Page C, Herrera R, Nuñez G (1997) Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278(5338):687–689

    Article  PubMed  Google Scholar 

  • Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S (1998) Phosphoinositide-3- OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci USA 95(19):11211–11216

    Article  PubMed  CAS  Google Scholar 

  • Delree P, Ribbons C, Martin D, Rogister B, Lefebvre PP, Rigo JM, Leprince P, Schoenen J, Moonen G (1993) Plasticity of developing and adult dorsal root ganglion neurons as revealed in vitro. Brain Res Bull 30:231–237

    Article  PubMed  CAS  Google Scholar 

  • Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275(5300):661–665

    Article  PubMed  CAS  Google Scholar 

  • Fiedorowicz A, Figiel I, Kaminska B, Zaremba M, Wilk S, Oderfeld-Nowak B (2001) Dentate granule neuron apoptosis and glia activation in murine hippocampus induced by trimethyltin exposure. Brain Res 912:116–127

    Article  PubMed  CAS  Google Scholar 

  • Guan J, Williams C, Gunning M, Mallard C, Gluckman P (1993) The effects of IGF-1 treatment after hypoxic-ischemic brain injury in adult rats. J Cereb Blood Flow Metab 13:609–616

    PubMed  CAS  Google Scholar 

  • Guan J, Williams CE, Skinner SJM, Mallard EM, Gluckman PD (1996) The effects of insulin-like growth factor (IGF)-1, IGF-2, and des-IGF-1 on neuronal loss after hypoxic-ischemic brain injury in adult rats: evidence for a role for IGF binding proteins. Endocrinology 13789:3–898

    Google Scholar 

  • Harry GJ, Lefebvre d’Hellencourt C (2002) The neuroinflammatory components of the trimethyltin (TMT) model of hippocampal neurodegeneration. In: Wood PL (ed) Neuroinflammation: mechanisms and management, 2nd edn. Humana Press Inc, Totowa, pp 301–329

    Google Scholar 

  • Harry GJ, Lefebvre d’Hellencourt C (2003) Dentate gyrus: alterations that occur with hippocampal injury. Neurotoxicology 24:343–356

    Article  PubMed  Google Scholar 

  • Harry GJ, Lefebvre d’Hellencourt C, Bruccoleri A, Schmechel D (2000) Age-dependent cytokine responses: trimethyltin hippocampal injury in wild-type, APOE knockout, and APOE4 mice. Brain Behav Immun 14:288–304

    Article  PubMed  CAS  Google Scholar 

  • Harry GJ, Funk JA, Lefebvre d’Hellencourt C, McPherson CA, Aoyama M (2008a) The type 1 interleukin 1 receptor is not required for the death of murine hippocampal dentate granule cells and microglia activation. Brain Res 1194:8–20

    Article  PubMed  CAS  Google Scholar 

  • Harry GJ, Wine RN, Lefebvre d’Hellencourt C, Funk JA, McPherson C, Aoyama M (2008b) TNFp55 receptor and TNFp75 receptor are involved in chemical-induced dentate granule cell death. J Neurochem 106:281–298

    Article  PubMed  CAS  Google Scholar 

  • Hwang IK, Yoo K-Y, Park S-K, Ana S-J, Lee J-Y, Choi SY, Kang JH, Kwon Y-G, Kanga T-C, Won MH (2004) Expression and changes of endogenous insulin-like growth factor-1 in neurons and glia in the gerbil hippocampus and dentate gyrus after ischemic insult. Neurochemistry Int 45:149–156

    Article  CAS  Google Scholar 

  • Imai F, Suzuki H, Oda J, Ninomiya T, Ono K, Sano H, Sawada M (2007) Neuroprotective effect of exogenous microglia in global brain ischemia. J Cereb Blood Flow Metab 27(3):488–500

    Article  PubMed  CAS  Google Scholar 

  • Jackson TC, Rani A, Kuman A, Foster TC (2009) Regional hippocampal differences in AKT survival signaling across the lifespan: implications for CA1 vulnerability with aging. Cell Death Diff 16:439–448

    Article  CAS  Google Scholar 

  • Jin S, DiPaola RS, Mathew R, White E (2007) Metabolic catastrophe as a means to cancer cell death. J Cell Sci 12037:9–383

    Google Scholar 

  • Johansen FF, Zimmer J, Diemer NH (1987) Early loss of somatostatin neurons in dentate hilus after cerebral ischemia in the rat precedes CA-1 pyramidal cell loss. Acta Neuropathol 73:110–114

    Article  PubMed  CAS  Google Scholar 

  • Johnston BM, Mallard EC, Williams CE, Gluckman PD (1996) Insulin-like growth factor-1 is a potent neuronal rescue agent after hypoxic-ischemic injury in fetal lambs. J Clin Invest 97(2):300–308

    Article  PubMed  CAS  Google Scholar 

  • Kadar T, Dachir S, Shukitt-Hale B, Levy A (1998) Sub-regional hippocampal vulnerability in various animal models leading to cognitive dysfunction. J Neural Transm 105:987–1004

    Article  PubMed  CAS  Google Scholar 

  • Kanthasamy AG, Yun RJ, Nguyen B, Truong DD (1999) Effect of riluzole on the neurological and neuropathological changes in an animal model of cardiac arrest-induced movement disorder. J Pharmacol Exp Ther 288(3):1340–1348

    PubMed  CAS  Google Scholar 

  • Kenchappa P, Yadav A, Singh G, Nandana S, Banerjee K (2004) Rescue of TNFalpha-inhibited neuronal cells by IGF-1 involves Akt and c-Jun N terminal kinases. J Neurosci Res 76:466–474

    Article  PubMed  CAS  Google Scholar 

  • Kielian T (2004) Microglia and chemokines in infectious diseases of the nervous system: views and reviews. Front Biosci 9:732–750

    Article  PubMed  CAS  Google Scholar 

  • Kitamura Y, Takata K, Inden M, Tsuchiya D, Yanagisawa D, Nakata J, Taniguchi T (2004) Intracerebroventricular injection of microglia protects against focal brain ischemia. J Pharmacol Sci 94:203–206

    Article  PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1996) Microglia, a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  PubMed  CAS  Google Scholar 

  • Lalancette-Hébert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27(10):2596–2605

    Article  PubMed  CAS  Google Scholar 

  • Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, Nielsen HH, Haugaard LS, Wirenfeldt M, Nielsen M, Dagnaes-Hansen F, Bluethmann H, Faergeman NJ, Meldgaard M, Deierborg T, Finsen B (2009) Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci 29(5):1319–1330

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre d’Hellencourt C, Harry GJ (2005) Molecular profiles of mRNA levels in laser capture microdisected murine hippocampal regions differentially responsive to TMT-induced cell death. J Neurochem 93:206–220

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre PP, Martin D, Staecker H, Weber T, Moonen G, Van De Water TR (1992) TGF-β1 expression is initiated in adult auditory neurons by sectioning of the auditory nerve. Neuroreport 3:295–298

    Article  PubMed  CAS  Google Scholar 

  • Leinninger GM, Backus C, Uhler MD, Lentz SI, Feldman EL (2004) Phosphatidylinositol 3-kinase and Akt effectors mediate insulin-like growth factor-I neuroprotection in dorsal root ganglia neurons. FASEB J 18(13):1544–1546

    PubMed  CAS  Google Scholar 

  • Li L, Qu Y, Mao M, Xiong Y, Mu D (2008) The involvement of phosphoinositid 3-kinase/Akt pathway in the activation of hypoxia-inducible factor-1alpha in the developing rat brain after hypoxia-ischemia. Brain Res 1197:152–158

    Article  PubMed  CAS  Google Scholar 

  • Lindholm D, Carroll P, Tzimagiogis G, Thoenen H (1996) Autocrine-paracrine regulation of hippocampal neuron survival by IGF-1 and the neurotrophins BDNF, NT-3 and NT-4. Eur J Neurosci 8(7):1452–1460

    Article  PubMed  CAS  Google Scholar 

  • Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75(1):59–72

    PubMed  CAS  Google Scholar 

  • Matthews CC, Feldman EL (1996) Insulin-like growth factor I rescues SH-SY5Y human neuroblastoma cells from hyperosmotic induced programmed cell death. JCell Physiol 166(2):323–331

    Article  CAS  Google Scholar 

  • McPherson C, Kubik J, Wine R, Lefebevre d’Hellencourt C, Harry GJ (2003) Alterations in cyclin A, B, and D1 in mouse dentate gyrus following TMT-induced hippocampal damage. Neurotoxicity Res 5:339–354

    Article  Google Scholar 

  • Nakagomi S, Suzuki Y, Namikawa K, Kiryu-Seo S, Kiyama H (2003) Expression of the activating transcription factor 3 prevents c-Jun N-terminal kinase-induced neuronal death by promoting heat shock protein 27 expression and Akt activation. J Neurosci 23:5187–5196

    PubMed  CAS  Google Scholar 

  • Nakao N, Odin P, Lindvall O, Brundin P (1996) Differential trophic effects of basic fibroblast growth factor, insulin-like growth factor-1, and neurotrophin-3 on striatal neurons in culture. Exp Neurol 138:144–157

    Article  PubMed  CAS  Google Scholar 

  • Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K (2006) Microglia provide neuroprotection after ischemia. FASEB J 20:714–716

    PubMed  CAS  Google Scholar 

  • Nicholas RS, Stevens S, Wing MG, Compston DA (2002) Microglia derived IGF-2 prevents TNFalpha induced death of mature oligodendrocytes in vitro. J Neuroimmunol 124:36–44

    Article  PubMed  CAS  Google Scholar 

  • Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14(5):381–395

    Article  PubMed  CAS  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  PubMed  CAS  Google Scholar 

  • Nitta A, Xheng W-H, Quirion R (2004) Insulin-like growth factor 1 prevents neuronal cell death induced by corticosterone through activation of the PI3K/Akt pathway. J Neurosci Res 76:98–103

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell SL, Frederick TJ, Krady JK, Vannucci SJ, Wood TL (2002) IGF-I and microglia/macrophage proliferation in the ischemic mouse brain. Glia 39(1):85–97

    Article  PubMed  Google Scholar 

  • Otto VI, Stahel PF, Rancan M, Kariya K, Shohami E, Yatsiv I, Eugster HP, Kossmann T, Trentz O, Morganti-Kossmann MC (2001) Regulation of chemokines and chemokine receptors after experimental closed head injury. Neuroreport 12:2059–2064

    Article  PubMed  CAS  Google Scholar 

  • Plas DR, Thompson CB (2005) Akt-dependent transformation: there is more to growth than just surviving. Oncogene 24(50):743574

    Article  CAS  Google Scholar 

  • Quirk SM, Harman RM, Cowan RG (2000) Regulation of Fas antigen (Fas, CD95)-mediated apoptosis of bovine granulosa cells by serum and growth factors. Biol Reprod 63:1278–1284

    Article  PubMed  CAS  Google Scholar 

  • Raivich G (2005) Like cops on the beat, the active role of resting microglia. Trends Neurosci 28:571–573

    Article  PubMed  CAS  Google Scholar 

  • Reuhl KR, Cramner JM (1984) Developmental neuropathology of organotin compounds. Neurotoxicology 5:187–204

    PubMed  CAS  Google Scholar 

  • Rezaie P, Trillo-Pazos G, Greenwood J, Everall IP, Male DK (2002) Motility and ramification of human fetal microglia in culture: an investigation using time-lapse video microscopy and image analysis. Exp Cell Res 274:68–82

    Article  PubMed  CAS  Google Scholar 

  • Richards RG, Klotz DM, Bush MR, Walmer DK, DiAugustine RP (2001) E2-induced degradation of uterine insulin receptor substrate-2: requirement for an IGF-I- stimulated, proteosome-dependent pathway. Endocrinology 142(9):3842–3849

    Article  PubMed  CAS  Google Scholar 

  • Riemenschneider MJ, Betensky RA, Pasedag SM, Louis DN (2006) AKT activation in human glioblastomas enhances proliferation via TSC2 and S6 kinase signaling. Cancer Res 66:5618–5623

    Article  PubMed  CAS  Google Scholar 

  • Rogister B, Delree P, Lepnince P, Martin D, Sadzot C, Malgrange B, Munaut C, Rigo JM, Lefebvre PP, Octave JN, Schoenen J, Moonen G (1993) Transforming growth factor-b1 as a neuronoglial signal during peripheral nervous system response to injury. J Neurosci Res 34:32–34

    Article  PubMed  CAS  Google Scholar 

  • Russell JW, Windebank AJ, Schenone A, Feldman EL (1998) Insulin-like growth factor-I prevents apoptosis in neurons after nerve growth factor withdrawal. J Neurobiol 36(4):455–467

    Article  PubMed  CAS  Google Scholar 

  • Russo VC, Kobayashi K, Najdovska S, Baker NL, Werther GA (2004) Neuronal protection from glucose deprivation via modulation of glucose transport and inhibition of apoptosis: a role for the insulin-like growth factor system. Brain Res 1009:40–53

    Article  PubMed  CAS  Google Scholar 

  • Song K, Cornelius SC, Reiss M, Danielpour D (2003) Insulin-like growth factor-I inhibits transcriptional responses of transforming growth factor-beta by phosphatidylinositol 3- kinase/Akt-dependent suppression of the activation of Smad3 but not Smad2. J Biol Chem 278:38342–38351

    Article  PubMed  CAS  Google Scholar 

  • Spires TL, Orne JD, SantaCruz K, Pitstick R, Carlson GA, Ashe KH, Hyman BT (2006) Region- specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy. Am J Pathol 186:1598–1607

    Article  CAS  Google Scholar 

  • Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40:133–139

    Article  PubMed  Google Scholar 

  • Tikka TM, Koistinaho JE (2001) Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia. J Immunol 166(12):7527–7533

    PubMed  CAS  Google Scholar 

  • Venters HD, Dantzer R, Kelley KW (2000) A new concept in neurodegeneration: TNFalpha is a silencer of survival signals. Trends Neurosci 23:175–180

    Article  PubMed  CAS  Google Scholar 

  • West MJ, Kawas CH, Stewart WF, Rudow GL, Troncoso JC (2004) Hippocampal neurons in pre-clinical Alzheimer’s disease. Neurobiol Aging 25:1205–1212

    Article  PubMed  CAS  Google Scholar 

  • Xu G, Zhang W, Bertram P, Zheng XF, McLeod H (2004) Pharmacogenomic profiling of the PI3K/PTEN-AKT-mTOR pathway in common human tumors. Int J Oncol 24(4):893–900

    PubMed  CAS  Google Scholar 

  • Yamada M, Tanabe K, Wada K, Shimoke K, Ishikawa Y, Ikeuchi T, Koizumi S, Hatanaka H (2001) Differences in survival-promoting effects and intracellular signaling properties of BDNF and IGF-1 in cultured cerebral cortical neurons. J Neurochem 78(5):940–951

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Wang HG (2001) The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene 20(53):7779–7786

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi A, Tamatani M, Matsuzaki H, Namikawa K, Kiyama H, Vitek MP, Mitsuda N, Tohyama M (2001) Akt activation protects hippocampal neurons from apoptosis by inhibiting transcriptional activity of p53. J Biol Chem 276:5256–5264

    Article  PubMed  CAS  Google Scholar 

  • Yrjänheikki J, Keinänen R, Pellikka M, Hökfelt T, Koistinaho J (1998) Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA 95(26):15769–15774

    Article  PubMed  Google Scholar 

  • Zhang SX, Gozal D, Sachleben LR Jr, Rane M, Klein JB, Gozal E (2003) Hypoxia induces an autocrine-paracrine survival pathway via platelet-derived growth factor (PDGF)- B/PDGF-beta receptor/phosphatidylinositol 3-kinase/Akt signaling in RN46A neuronal cells. FASEB J 17(12):1709–1711

    PubMed  CAS  Google Scholar 

  • Zhang L, Li L, Prabhakaran K, Borowitz JL, Isom GE (2006) Trimethyltin-induced apoptosis is associated with upregulation of inducible nitric oxide synthase and Bax in a hippocampal cell line. Toxicol Appl Pharmacol 216(1):34–43

    Article  PubMed  CAS  Google Scholar 

  • Zheng WH, Kar S, Quirion R (2002) Insulin-like growth factor-1-induced phosphorylation of transcription factor FKHRL1 is mediated by phosphatidylinositol 3-kinase/Akt kinase and role of this pathway in insulin-like growth factor-1-induced survival of cultured hippocampal neurons. Mol Pharmacol 62(2):225–233

    Article  PubMed  CAS  Google Scholar 

  • Zhu CZ, Auer RN (1994) Intraventricular administration of insulin and IGF-1 in transient forebrain ischemia. J Cereb Blood Flow Metab 14:237–242

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Jean Harry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wine, R.N., McPherson, C.A. & Harry, G.J. IGF-1 and pAKT Signaling Promote Hippocampal CA1 Neuronal Survival Following Injury to Dentate Granule Cells. Neurotox Res 16, 280–292 (2009). https://doi.org/10.1007/s12640-009-9060-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9060-y

Keywords

Navigation