Skip to main content
Log in

Conferring Drought and Salinity Stress Tolerance in Horticultural Crops by Si Application

  • Review
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Due to climate change, and increasing environmental stresses the foliar and soil application of Si, as well as genetic engineering application to increase Si uptake, has gained special importance. Anatomical, biochemical, and metabolic changes in plant tissues that result from the accumulation and transport of Si in the cell are responsible for its beneficial role. Although Si has been introduced as a quasiessential element, its effectiveness in increasing the activity of the antioxidant system, altering the biosynthesis or signaling pathways of hormones, and controlling reactive oxygen species (ROS) indicate its importance and necessity beyond a quasi‒essential element in plant nutrition. Si is also involved in absorbing and transporting other elements, and Si nutrition is effective in improving plant growth under both deficiency and toxicity of elements such as iron and manganese. This element decreases stress intensity through non-chemical mechanisms, such as reducing the transfer of toxic elements from the roots to the shoots and improving plant water relations through mechanical changes caused by Si deposition in plant tissues, which in turn alter gene expression through hormonal signals. In this review, we have provided useful information on the application of Si in horticultural crops. However, the effect of silicon on metabolic processes is not well understood and requires a comprehensive study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

Si:

Silicon

ABA:

Abscisic acid

IAA:

Indole-3-acetic acid

PPO:

Polyphenol oxidases

TSS:

Total soluble sugar

TA:

Total Acid

MDA:

Malondialdehyde

Al:

Aluminum

Cd:

Cadmium

Pb:

Lead

Cr:

Chromium

References

  1. Liu HX, Guo ZG, Guo Xh, Zhou X, Hui W, Wang K (2009) Effect of addition of silicon on water use efficiency and yield components of alfalfa under the different soil moisture. Acta Ecol Sin 29(6):3075–3080

    CAS  Google Scholar 

  2. De Souz O, Mello Prado RD, e Oliveira Silva SL, Farias TP, Neto JG, Souza Junior JP (2019) Silicon Leaf Fertilization Promotes Biofortification and Increases Dry Matter, Ascorbate Content, and Decreases Post-Harvest Leaf Water Loss of Chard and Kale. Commun. Soil Sci Plant Anal 50(2):164–172

    Article  Google Scholar 

  3. Soundararajan P, Manivannan A, Ko CH, Muneer S, Jeong BR (2017) Leaf Physiological and Proteomic Analysis to Elucidate Silicon Induced Adaptive Response under Salt Stress in Rosa hybrida ‘Rock Fire.’ Int J Mol Sci 18(8):1768

    Article  PubMed  PubMed Central  Google Scholar 

  4. da Conceição EGJ, Martins FM, de Aguiar Accioly AM, de Freitas-Silva L, da Cruz MFA (2021) Histological changes in banana rhizomes promoted by a silicon-Fusarium oxysporum interaction. J Plant Pathol 103:531–537

    Article  Google Scholar 

  5. Khan A, Khan AL, Imran M, Asaf S, Kim YH, Bilal S, Numan M, Al-Harrasi A, Al-Rawahi A, Lee IJ (2020) Silicon-induced thermotolerance in Solanum lycopersicum L. Via activation of antioxidant system, heat shock proteins, andendogenous phytohormones. BMC Plant Biol 20:248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhat JA, Shivaraj SM, Singh P, Navadagi DB, Tripathi DK, Dash PK, Solanke AU, Sonah H, Deshmukh R (2019) Role of Silicon in Mitigation of Heavy Metal Stresses in Crop Plants. Plants (Basel, Switzerland) 8(3):71

    CAS  PubMed  Google Scholar 

  7. Kim YH, Khan A, Waqas M, Shim JK, Kim DH, Lee KY, Lee IJ (2014) Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. Plant Growth Regul 33:137–149

    Article  CAS  Google Scholar 

  8. Haynes RJ (2019) What effect does liming have on silicon availability in agricultural soils? Geoderma 337:375–383

    Article  CAS  Google Scholar 

  9. Yin LN, Wang SW, Li JY, Tanaka K, Oka M (2013) Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiol Plantar 35:3099–3107

    Article  CAS  Google Scholar 

  10. Berni R, Mandlik R, Hausman J, Guerriero G (2021) Silicon-induced mitigatory effects in salt-stressed hemp leaves. Physiol Plant 171(4):476–482

    Article  CAS  PubMed  Google Scholar 

  11. Datnoff LE, Snyder GH, Korndörfer GH (2001) Silicon in agriculture. Elsevier

    Google Scholar 

  12. Yoshida S, Navasero SA, Ramirez EA (1969) Effect of silica of and nitrogen supply on some leaf characteristics of the rice plant. Plant Soil 31:46–56

    Article  Google Scholar 

  13. Chen D, Cao B, Wang S, Liu P, Deng X, Yin L, Zhang S (2016) Silicon moderated the K deficiency by improving the plant-water status in sorghum. Sci Rep 6(1):1–14

    Google Scholar 

  14. Savant NK, Korndörfer GH, Datnoff LE, Snyder GH (1999) Silicon nutrition and sugarcane production: a review. J Plant Nutr 22(12):1853–1903

    Article  CAS  Google Scholar 

  15. ZhuY GH (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34:455–472

    Article  Google Scholar 

  16. Liu P, Yin L, Deng X, Wang S, Tanaka K, Zhang S (2014) Aquaporin–mediated increase in root hydraulic conductance is involved in silicon–induced improved root water uptake under osmotic stress in Sorghum bicolor L. J Exp Bot 65(17):4747–4756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saja-Garbarz D, Ostrowska A, Kaczanowska K, Janowiak F (2021) Accumulation of Silicon and Changes in Water Balance under Drought Stress in Brassica napus var. napus L. Plants 10(2):280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zuccarini P (2008) Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biol Plantar 52:157–160

    Article  CAS  Google Scholar 

  19. Wang Y, Zhang B, Jiang D, Chen G (2019) Silicon improves photosynthetic performance by optimizing thylakoid membrane protein components in rice under drought stress. Environ Exp Bot 158:117–124

    Article  CAS  Google Scholar 

  20. Song AL, Li P, Li Z, Fan F, Nikolic M, Liang Y (2011) The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant Soil 344:319–333

    Article  CAS  Google Scholar 

  21. Moradtalab N, Hajiboland R, Aliasgharzad N, Hartmann TE, Neumann G (2019) Silicon and the Association with an Arbuscular-Mycorrhizal Fungus (Rhizophagus clarus) Mitigate the Adverse Effects of Drought Stress on Strawberry. Agronomy 9(1):41

    Article  CAS  Google Scholar 

  22. Hajiboland R, Cheraghvareh L, Poschenrieder C (2017) Improvement of drought tolerance in tobacco (Nicotiana rustica L.) plants by silicon. J Plant Nutr 40(12):1661–1676

    Article  CAS  Google Scholar 

  23. Farahani H, Sajedi NA, Madani H, Changizi M, Naeini MR (2021) Effect of Foliar-Applied Silicon on Flower Yield and Essential Oil Composition of Damask Rose (Rosa damascena Miller) under Water Deficit Stress. Silicon 13(12):4463–4472

    Article  CAS  Google Scholar 

  24. Karagiannis E, Michailidis M, Skodra C, Molassiotis A, Tanou G (2021) Silicon influenced ripening metabolism and improved fruit quality traits in apples. Plant Physiol Biochem 166:270–277

    Article  CAS  PubMed  Google Scholar 

  25. Savvas D, Ntatsi G (2015) Biostimulant activity of silicon in horticulture. Sci Hortic 196:66–81

    Article  CAS  Google Scholar 

  26. Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34:455–472. https://doi.org/10.1007/s13593-013-0194-1

    Article  CAS  Google Scholar 

  27. Khan MIR, Ashfaque F, Chhillar H, Irfan M, Khan NA (2021) The intricacy of silicon, plant growth regulators and other signaling molecules for abiotic stress tolerance: An entrancing crosstalk between stress alleviators. Plant Physiol Biochem 162:36–47

    Article  CAS  PubMed  Google Scholar 

  28. Gou T, Su Y, Han R, Jia J, Zhu Z, Huo H, Liu H, Gong H (2022) Silicon delays salt stress-induced senescence by increasing cytokinin synthesis in tomato. Sci Hortic 293:110750

    Article  CAS  Google Scholar 

  29. Addicott FT, Lynch RS, Carns HR (1955) Auxin Gradient Theory of Abscission Regulation. Science 121(3148):644–645

    Article  CAS  PubMed  Google Scholar 

  30. Hvoslef-Eide AK, Munster CM, Mathiesen CA, Ayeh KO, Melby TI, Rasolomanana P, Lee Y (2016) Primary and secondary abscission in Pisum sativum and Euphorbia pulcherrima —how do they compare and how do they differ? Front Plant Sci 6:1204. https://doi.org/10.3389/fpls.2015.01204

  31. Aliyari E, Dashtban AR, Hokmabadi H (2015) The effect of silica and potassium silicate fertilizers on some pistachio cultivars in Damghan region. National conference on scientific approach in green gold industry, pistachio, Damghan, Iran. (In Persian)

  32. Laane HM (2017) The effects of the application of foliar sprays with stabilized silicic acid: An overview of the results from 2003–2014. Silicon 9:803–807

    Article  CAS  Google Scholar 

  33. Lee SK, Sohn EY, Hamayun M, Yoon JY, Lee IJ (2010) Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agrofor Syst 80(3):333–340

    Article  Google Scholar 

  34. Silva Conceição S, Oliveira Neto C, Marques E, Barbosa A, Galvão J, Oliveira T, Okumura R, Silva Martins J, Costa T, Gomes-Filho E (2019) Silicon modulates the activity of antioxidant enzymes and nitrogen compounds in sunflower plants under salt stress. Arch Agron Soil Sci 65(9):1237–1247

    Article  Google Scholar 

  35. Coskun D, Deshmukh R, Sonah HG, Menzies J, Reynolds O, Feng Ma J, Kronzucker H, Richard Bélanger R (2018) The controversies of silicon’s role in plant biology. Phytol 221:67–85

  36. Hajiboland R, Bahrami-Rad S, Poschenrieder C (2017) Silicon modifies both a local response and a systemic response to mechanical stress in tobacco leaves. Biol Plant 61:187–191

    Article  CAS  Google Scholar 

  37. Wang SY, Galletta GJ (1998) Foliar application of potassium silicate induces metabolic changes in strawberry plants. J Plant Nutr 21:157–167

    Article  CAS  Google Scholar 

  38. Gao XP, Zou C, Wang L, Zhang F (2005) Silicon improves water use efficiency in maize plants. J Plant Nutr 27:1457–1470

    Article  Google Scholar 

  39. Pavlovic J, Kostic L, Bosnic P, Kirkby EA, Nikolic M (2021) Interactions of Silicon with Essential and Beneficial Elements in Plants. Front Plant Sci 12:697592

    Article  PubMed  PubMed Central  Google Scholar 

  40. Arghavani M, Savadkoohi S, Mortazavi S (2017) Effect of silicon application on salinity tolerance in Kentucky bluegrass. J Crops Improv 19(1):133–145 In Persian)

    Google Scholar 

  41. Marschner H (1983) In: Läuchli A, Bieleski, RL (eds) Inorganic Plant Nutrition. Encyclopedia of Plant Physiology. Berlin: Springer

  42. Qian YL, Wilhelm SJ, Marcum KB (2001) Comparative responses of two Kentucky bluegrass cultivars to salinity stress. Crop Sci 41(6):1895–1900

    Article  Google Scholar 

  43. Miao BH, Han XG, Zhang WH (2010) The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Ann Bot 105(6):967–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liang Y, Zhang W, Chen Q, Liu Y, Ding R (2006) Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot 57(3):212–219

    Article  CAS  Google Scholar 

  45. Haddad C, Arkoun M, Jamois F, Schwarzenberg A, Yvin JC, Etienne P, Laîné P (2018) Silicon Promotes Growth of Brassica napus L. and Delays Leaf Senescence Induced by Nitrogen Starvation. Front Plant Sci 9:516

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wu X, Yu Y, Baerson SR, Song Y, Liang G, Ding C, Niu J, Pan Z, Zeng R (2017) Interactions between nitrogen and silicon in rice and their effects on resistance toward the brown planthopper Nilaparvata lugens. Front Plant Sci 8:28

    PubMed  PubMed Central  Google Scholar 

  47. Kostic L, Nikolic N, Bosnic D, Samardzic J, Nikolic M (2017) Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant Soil 419(1):447–455

    Article  CAS  Google Scholar 

  48. Hu AY, Che J, Shao JF, Yokosho K, Zhao XQ, Shen RF, Ma JF (2018) Silicon accumulated in the shoots results in down-regulation of phosphorus transporter gene expression and decrease of phosphorus uptake in rice. Plant Soil 423(1):317–325

    Article  CAS  Google Scholar 

  49. Réthoré E, Ali N, Yvin JC, Hosseini SA (2020) Silicon regulates source to sink metabolic homeostasis and promotes growth of rice plants under sulfur deficiency. Int J Mol Sci 21:3677

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nikolic DB, Nesic S, Bosnic D, Kostic L, Nikolic M, Samardzic JT (2019) Silicon Alleviates Iron Deficiency in Barley by Enhancing Expression of Strategy II Genes and Metal Redistribution. Front Plant Sci 10:416

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ouellette S, Goyette M-H, Labbé C, Laur J, Gaudreau L, Gosselin A, Dorais M, Deshmukh RK, Bélanger RR (2017) Silicon Transporters and Effects of Silicon Amendments in Strawberry under High Tunnel and Field Conditions. Front Plant Sci 8:949

    Article  PubMed  PubMed Central  Google Scholar 

  52. Che J, Yamaji N, Shao JF, Ma JF, Shen RF (2016) Silicon decreases both uptake and root-to-shoot translocation of manganese in rice. J Exp Bot 67(5):1535–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hu J, Cai X, Jeong BR (2019) Silicon affects root development, tissue mineral content, and expression of silicon transporter genes in poinsettia (Euphorbia pulcherrima willd.) cultivars. Plants 8(6):180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zarei B, Kiarostami K, Hosseinzade Namin M, Sorahinobar M (2020) Effect of silicon nanoparticles on some physiological parameters of saffron corm (Crocus sativus). Appl Biol 33(2):62–77

    Google Scholar 

  55. Sperandio MVL, Santos LA, Bucher CA, Fernandes MS, de Souza SR (2011) Isoforms of plasma membrane H+-ATPase in rice root and shoot are differentially induced by starvation and resupply of NO3− or NH4+. Plant Sci 180(2):251–258

    Article  CAS  PubMed  Google Scholar 

  56. Greger M, Landberg T, Vaculík M (2018) Silicon influences soil availability and accumulation of mineral nutrients in various plant species. Plants 7:41

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhang Y, Liang Y, Zhao X, Jin X, Hou L, Shi Y, Ahammed GJ (2019) Silicon compensates phosphorus deficit-induced growth inhibition by improving photosynthetic capacity, antioxidant potential, and nutrient homeostasis in tomato. Agronomy 9:733

    Article  CAS  Google Scholar 

  58. Maillard A, Ali N, Schwarzenberg A, Jamois F, Yvin JC, Hosseini SA (2018) Silicon transcriptionally regulates sulfur and ABA metabolism and delays leaf senescence in barley under combined sulfur deficiency and osmotic stress. Environ Exp Bot 155:394–410

    Article  CAS  Google Scholar 

  59. Brackhage C, Schaller J, Bäucker E, Dudel EG (2013) Silicon availability affects the stoichiometry and content of calcium and micro nutrients in the leaves of common reed. Silicon 5(3):199–204

    Article  CAS  Google Scholar 

  60. Tebow JB, Houston LL, Dickson RW (2021) Silicon Foliar Spray and Substrate Drench Effects on Plant Growth, Morphology, and Resistance to Wilting with Container-Grown Edible Species. Horticulturae 7(9):263

    Article  Google Scholar 

  61. Bukhari MA, Ahmad Z, Ashraf MY, Afzal M, Nawaz F, Nafees M, Jatoi WN, Malghani NA, Shah AN, Manan A (2021) Silicon mitigates drought stress in wheat (Triticum aestivum L.) through improving photosynthetic pigments, biochemical and yield characters. Silicon 13(12):4757–4772

    Article  CAS  Google Scholar 

  62. Zahoor A, Waraich EA, Barutçular C, Hossain A, Erman M, Çiğ F, Gharib H, El Sabagh A (2020) Enhancing drought tolerance in wheat through improving morphophysiological and antioxidants activities of plants by the supplementation of foliar silicon. Phyton 89(3):529

    Article  Google Scholar 

  63. Bijanzadeh E, Naderi R, Barati V (2018) Influence of silicon priming on seedling growth, root xylem anatomy and ion accumulation of barley (Hordeum vulgare L.) under drought stress. J Plant Proc Func 7(25):10

    Google Scholar 

  64. Ghorbanpour M, Mohammadi H, Kariman K (2020) Nanosilicon-based recovery of barley (Hordeum vulgare) plants subjected to drought stress. Environ Sci Nano 7(2):443–461

    Article  CAS  Google Scholar 

  65. Hattori T, Sonobe K, Inanaga S, An P, Tsuji W, Araki H, Eneji AE, Morita S (2007) Short term stomatal responses to light intensity changes and osmotic stress in sorghum seedlings raised with and without silicon. Environ Exp Bot 60(2):177–182

    Article  CAS  Google Scholar 

  66. Ahmed M, Asif M, Hassan FU (2014) Augmenting drought tolerance in sorghum by silicon nutrition. Acta Physiol Plant 36(2):473–483

    Article  CAS  Google Scholar 

  67. Nolla A, Faria RJ, Korndorfer GH, Silva TRB (2012) Effect of silicon on drought tolerance of upland rice. J Food Agric Environ 10(1):269–272

    CAS  Google Scholar 

  68. Mauad M, Crusciol CAC, Nascente AS, Grassi Filho H, Lima GPP (2016) Effects of silicon and drought stress on biochemical characteristics of leaves of upland rice cultivars. Rev Cienc Agron 47:532–539

    Article  Google Scholar 

  69. Hasanuzzaman M, Nahar K, Anee TI, Khan MIR, Fujita M (2018) Silicon-mediated regulation of antioxidant defense and glyoxalase systems confers drought stress tolerance in Brassica napus L. S Afr J Bot 115:50–57

    Article  CAS  Google Scholar 

  70. Gunes A, Pilbeam DJ, Inal A, Coban S (2008) Influence of silicon on sunflower cultivars under drought stress, I: growth, antioxidant mechanisms, and lipid peroxidation. Commun Soil Sci Plant Anal 39(13–14):1885–1903

    Article  CAS  Google Scholar 

  71. Boldt J, Altland JE (2021) Petunia (Petunia ×hybrida) Cultivars Vary in Silicon Accumulation and Distribution. Hort Science 56(3):305–312

    CAS  Google Scholar 

  72. Heine G, Tikum G, Horst WJ (2005) Silicon nutrition of tomato and bitter gourd with special emphasis on silicon distribution in root fractions. J Plant Nutr Soil Sci 168:600–606

    Article  CAS  Google Scholar 

  73. Soundararajan P, Manivannan A, Ko CH, Muneer S, Jeong BR (2017) Leaf Physiological and Proteomic Analysis to Elucidate Silicon Induced Adaptive Response under Salt Stress in Rosa hybrida ‘Rock Fire.’ Int J Mol Sci 18(8):1768

    Article  PubMed  PubMed Central  Google Scholar 

  74. Asgari F, Diyanati M (2020) Effects of silicon on some morphological and physiological traits of rose (Rosa chinensis var. minima) plants grown under salinity stress. J Plant Nutr 44(4):536–549

    Article  Google Scholar 

  75. Savvas D, Giotis D, Chatzieustratiou E, Bakea M, Patakioutas G (2009) Silicon supply in soilless cultivations of zucchini alleviates stress induced by salinity and powdery mildew infections. Environ Exp Bot 65:11–17

    Article  CAS  Google Scholar 

  76. Song J, Li Y, Hu J, Lee J, Jeong BR (2021) Pre-and/or postharvest silicon application prolongs the vase life and enhances the quality of cut peony (Paeonia lactiflora Pall.) flowers. Plants 10(8):1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. De Souza O, Mello Prado RD, e Oliveira Silva SL, Farias TP, Neto JG, Souza Junior JP (2019) Silicon Leaf Fertilization Promotes Biofortification and Increases Dry Matter, Ascorbate Content, and Decreases Post-Harvest Leaf Water Loss of Chard and Kale. Commun Soil Sci Plant Anal 50(2):164–172

    Article  Google Scholar 

  78. D’Imperio M, Renna M, Cardinali A, Buttaro D, Santamaria P, Serio F (2016) Silicon biofortification of leafy vegetables and its bioaccessibility in the edible parts. J Sci Food Agric 96:751–756

    Article  PubMed  Google Scholar 

  79. Buturi CV, Mauro RP, Fogliano V, Leonardi C, Giuffrida F (2021) Mineral Biofortification of Vegetables as a Tool to Improve Human Diet. Foods 10:223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ma JF (2003) In: Müller W.E.G. (eds) Silicon Biomineralization. Progress in Molecular and Subcellular Biology. Berlin: Springer

  81. Shetty R, Jensen B, Shelton D, Jørgensen K, Pedas P, Jørgensen HJL (2021) Site-specific, silicon-induced structural and molecular defence responses against powdery mildew infection in roses. Pest Manag Sci 77(10):4545–4554

    Article  CAS  PubMed  Google Scholar 

  82. Zaky AA (2013) Effect of pre- and postharvest treatments on flower longevity of cut rose cv. Grand Prix. Egypt J Agric Res 91(3):1009–1021

    Google Scholar 

  83. Shahzad S, Ali S, Ahmad R, Ercisli S, Anjum MA (2022) Foliar Application of Silicon Enhances Growth, Flower Yield, Quality and Postharvest Life of Tuberose (Polianthes tuberosa L.) under Saline Conditions by Improving Antioxidant Defense Mechanism. Silicon 14:1511–1518

    Article  CAS  Google Scholar 

  84. Bayat H, Alirezaie M, Neamati H, Abdollahi Saadabad A (2000) Effect of silicon on growth and ornamental traits of salt-stressed calendula (Calendula officinalis L.). J Ornament Plants 4:207–214

    Google Scholar 

  85. Tejada-Ruiz S, Gonzalez-Lopez C, Rojas E, Jiménez-Becker S (2020) Effect of the Foliar Application of Microalgae Hydrolysate (Arthrospira platensis) and Silicon on the Growth of Pelargonium hortorum L.H. Bailey under Salinity Conditions. Agron 10(11):1713

    Article  CAS  Google Scholar 

  86. Mieszkalska K, Łukaszewska A (2011) Effect of the silicon and phosphoruscontaining fertilizer on geranium (Pelargonium hortorum L.H. Bailey) response to water stress. Acta Sci Pol Hortoru 10(3):113–121

    Google Scholar 

  87. Mantovani C, Prado RM, Pivetta KFL (2018) Silicon foliar application on nutrition and growth of Phalaenopsis and Dendrobium orchids. Sci Hortic 241:83–92

    Article  CAS  Google Scholar 

  88. Sánchez-Navarro JF, González-García Y, Benavides-Mendoza A, Morales-Díaz AB, González-Morales S, Cadenas-Pliego G, García-Guillermo MdS, Juárez-Maldonado A (2021) Silicon Nanoparticles Improve the Shelf Life and Antioxidant Status of Lilium. Plants 10(11):2338

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kamenidou S, Cavins TJ, Marek S (2008) Silicon supplements affect horticultural traits of greenhouse-produced ornamental sunflowers. Hort Science 43(1):236–239

    CAS  Google Scholar 

  90. Kazemi M (2012) Effect of Cobalt, Silicon, Acetylsalicylic Acid and Sucrose as Novel Agents to Improve Vase-life of Argyranthemum Flowers. Trends Tech Sci Res 7:579–583

    Article  Google Scholar 

  91. Kamenidou S, Cavins TJ, Marek S (2010) Silicon supplements affect floricultural quality traits and elemental nutrient concentrations of greenhouse produced gerbera. Sci Hortic 123(3):390–394

    Article  CAS  Google Scholar 

  92. Abd El Gayed M (2019) Effect of silicon levels and methods of application on vegetative growth and flowering of zinnia (Zinnia elegans L.). J Product Dev 24(4):929–944

    Article  Google Scholar 

  93. Zhao D, Hao Z, Tao J, Han C (2013) Silicon application enhances the mechanical strength of inflorescence stem in herbaceous peony (Paeonia lactiflora Pall.). Sci Hortic 151:165–172

    Article  CAS  Google Scholar 

  94. Zhao D, Xu C, Luan Y, Shi W, Tang Y, Tao J (2021) Silicon enhances stem strength by promoting lignin accumulation in herbaceous peony (Paeonia lactiflora Pall.). Int J Biol Macromol 190:769–779

    Article  CAS  PubMed  Google Scholar 

  95. Kazemi M, Asadi M, Aghdasi S (2012) Postharvest life of cut Lisianthus flowers as affected by silicon, maleic acid and acetylsalicylic acid. Research J Soil Biology 4(1):15–20

    Article  Google Scholar 

  96. Gembara J, Chelpinski P, Mikiciuk G, Ochmian I, Sosnowska M, Lewandowski J (2009) Wpływ preparatu ActiSil na ograniczenie pękania i jakość owoców czereśni. Zesz Probl Postepow Nauk Roln 536:81–86

  97. Artyszak A (2018) Effect of silicon fertilization on crop yield quantity and quality—A literature review in Europe. Plants 7(3):54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Skupien K, Ochmian J, Grajkowski J (2008) Influence of mineral fertilization on selected physical features and chemical composition of aronia fruit. Acta Agrophys 11:213–226

    Google Scholar 

  99. Chu G, Zhang M, Liang Y (2017) Applying silicate fertilizer increases both field and quality of table grape (Vitis vinifera L.) grown on calcareous grey desert soil. In Proceedings of the 7th International Conference on Silicon in Agriculture, India 129: 24–28

  100. Crusciol CAC, Pulz AL, Lemos LB, Soratto RP, Lima GPP (2009) Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop Sci 49:949–954

    Article  CAS  Google Scholar 

  101. Laane HM (2017) The effects of the application of foliar sprays with stabilized silicic acid: An overview of the results from 2003–2014. Silicon 9:803–807

    Article  CAS  Google Scholar 

  102. Trawczyński C (2018) The effect of foliar preparation with silicon on the yield and quality of potato tubers in compared to selected biostimulators. Fragm Agron 35:113–122

    Google Scholar 

  103. Lozano CS, Rezende R, Hachmann TL, Santos FAS, Lorenzoni MZ, Souza ÁHCD (2018) Yield and quality of melon under silicon doses and irrigation management in a greenhouse. Pesqui Agropecu Trop 48:140–146

    Article  Google Scholar 

  104. Yaghubi K, Vafaee Y, Ghaderi N, Javadi T (2019) Potassium silicate improves salinity resistant and affects fruit quality in two strawberry cultivars grown under salt stress. Commun Soil Sci Plant Anal 50(12):1439–1451

    Article  CAS  Google Scholar 

  105. Neto HDSL, Guimarães MDA, Mesquita RO, Gomes Sampaio IM, de Araújo Hendges ARA, de Oliveira AB (2018) Silicon potential as attenuator of salinity effects on growth and post-harvest quality of lettuce. J Agric Sci 10:455–463

    Google Scholar 

  106. Venâncio JB, da Silva Dias N, de Medeiros JF, de Moraes PLD, do Nascimento CWA, de Sousa Neto ON, da Silva Sá FV (2022) Yield and Morphophysiology of Onion Grown under Salinity and Fertilization with Silicon. Sci Hortic 301:111095

    Article  Google Scholar 

  107. Zahedi SM, Moharrami F, Sarikhani S, Padervand M (2020) Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Sci Rep 10:17672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Helaly MN, El-Hoseiny H, El-Sheery NI, Rastogi A, Kalaji HM (2017) Regulation and physiological role of silicon in alleviating drought stress of mango. Plant Physiol Biochem 118:31–44

    Article  CAS  PubMed  Google Scholar 

  109. Diniz GL, Nobre RG, de Lima GS, de Pádua SL, dos Anjos Soares LA, Gheyi HR (2020) Phytomass and quality of yellow passion fruit seedlings under salt stress and silicon fertilization. Comun Sci 11:e3400

    Article  Google Scholar 

  110. Souza A, Cortes MDB, da Silva G, de Sousa TP, Rodrigues FA, Filippi MCC (2015) Enzyme-induced defense response in the suppression of rice leaf blast (Magnaporthe Oryzae) by silicon fertilization and bioagents. Int J Res Stud Biosci 3(5):22–32

    Google Scholar 

  111. Tavakoli F (2022) Effect of potassium silicate and humic acid on some morphological and physiological traits of grape (Vitis vinifera L. Var. Fakhri) in the Harsin region of Kermanshah province, Malayer University, Iran. (In Persian)

  112. Azizi H, Hassani A, Rasouli Sadaghiani M, Abbaspour N, Doulati Baneh H (2017) Effect of foliar application of potassium silicate and zinc sulphate on some physiological parameters of two grapevine cultivars under salt stress conditions. Iran J Hortic Sci 47(4):797–810 ((In Persian))

    Google Scholar 

  113. Ahanger MA, Morad-Talab N, Abd-Allah EF, Ahmad P, Hajiboland R (2016). In: Ahmadi P (ed) Water stress and crop plants: a sustainable approach. Wiley, Germany

    Google Scholar 

  114. Haddad C, Trouverie J, Arkoun M, Yvin JC, Caïus J, Brunaud V, Laîné P, Etienne P (2019) Silicon supply affects the root transcriptome of Brassica napus L. Planta 249:1645–1651

    Article  CAS  PubMed  Google Scholar 

  115. Zhang G, Cui Y, Ding X, Dai Q (2013) Stimulation of phenolic metabolism by silicon contributes to rice resistance to sheath blight. J Plant Nutr Soil Sci 176:118–124

    Article  CAS  Google Scholar 

  116. Barberon M, Vermeer JEM, De Bellis D, Wang P, Naseer S, Andersen TG, Humbel BM, Nawrath C, Takano J, Salt DE, Geldner N (2016) Adaptation of Root Function by Nutrient-Induced Plasticity of Endodermal Differentiation. Cell 164:447–459

    Article  CAS  PubMed  Google Scholar 

  117. Markovich O, Steiner E, Kouril S, Tarkowski P, Aharoni A, Elbaum R (2017) Silicon promotes cytokinin biosynthesis and delays senescence in Arabidopsis and Sorghum. Plant Cell Environ 10:1189–12913

    Article  Google Scholar 

  118. Abdel Latef AA, Tran LS (2016) Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Front Plant Sci 7:243

    Article  PubMed  PubMed Central  Google Scholar 

  119. Fleck AT, Schulze S, Hinrichs M, Specht A, Waßmann F, Schreiber L, Schenk MK (2015) Silicon promotes exodermal casparian and formation in Si-accumulating and Si-excluding species by forming phenol complexes. PLoS ONE 10(9):e0138555

    Article  PubMed  PubMed Central  Google Scholar 

  120. Shetty R, Fretté X, Jensen B, Shetty NP, Jensen JD, Jørgensen HJL, Newman MA, Christensen LP (2011) Silicon-induced changes in antifungal phenolic acids, flavonoids, and key phenylpropanoid pathway genes during the interaction between miniature roses and the biotrophic pathogen Podosphaera pannosa. Plant Physiol 157(4):2194–2205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gao H, Yu W, Yang X, Liang J, Sun X, Sun M, Xiao Y, Peng F (2022) Silicon enhances the drought resistance of peach seedlings by regulating hormone, amino acid, and sugar metabolism. BMC Plant Biol 22(1):422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not for profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Mina Bayanati conceived the idea and wrote this manuscript. Maryam Bayanati, Mousa Rasouli, and Baehnam Asgari Lajayer reviewed the manuscript. All authors collected literature and approved the submitted version. Reviewing, and editing the manuscript were conducted by Mina Bayanati, and Abdel Rahman Mohammad Al-Tawaha.

Corresponding author

Correspondence to Mina Bayanati.

Ethics declarations

Ethics Approval

All authors ethically approved the submission.

Consent to Participate

All permission granted.

Consent for Publication

All permission granted.

Competing Interests/Confict of Interest

There is no conflict of interest between authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayanati, M., Mohammad Al‑Tawaha, A.R., Bayanati, M. et al. Conferring Drought and Salinity Stress Tolerance in Horticultural Crops by Si Application. Silicon 15, 5833–5843 (2023). https://doi.org/10.1007/s12633-023-02489-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02489-1

Keywords

Navigation