Skip to main content
Log in

Synthesis and Characterization of Flexible Resistive Humidity Sensors Based on PVA/PEO/CuO Nanocomposites

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Synthesis of polyvinyl alcohol (PVA)–polyethylene oxide (PEO)–copper oxide (CuO) nanocomposites and studying their structural and optical properties for humidity sensors applications were investigated. The prepared humidity sensors have lightweight, low cost, flexible and high sensitivity compare with other humidity sensors. The results showed that the nanocomposites have high absorption in UV region. The absorbance of (PVA–PEO) blend increases with increase in CuO nanoparticles concentrations which may be used for solar cell, transistors, diodes and other electronic applications. The optical constants increase while the transmittance and energy gap decrease as CuO nanoparticles concentrations increase. The results of application showed that the (PVA–PEO–CuO) nanocomposites with different copper oxide nanoparticles concentrations have high sensitivity for relative humidity which may be used as sensors for different humidity ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Chitra, S. Srinivasan, B. Praveenkumar, Characterization of composite metal oxide humidity sensor for oil lubricating system—a review. Int. J. Pure Appl. Math. 118(5), 815–823 (2018)

    Google Scholar 

  2. C. Manjula, N. Prakash, S. Arungalai Vendan, N.G. Renganathan, Studies on copper molybdate as humidity sensor. Int. J. TechnoChem Res. 4(1), 7–64 (2018)

    Google Scholar 

  3. S.R. Manohara, S.S. Samal, G.E. Rudreshappa, Humidity sensing properties of multiwalled carbon nanotubepolyvinyl alcohol nanocomposite films. Nanosci. Nanotechnol. Asia (2016). https://doi.org/10.2174/2210681206666160328201458

    Article  Google Scholar 

  4. B.C. Yadav, A.K. Srivastava, P. Sharma, Resistance based humidity sensing properties of TiO2. Sens. Transduc. J. 81(7), 1348–1353 (2007)

    Google Scholar 

  5. S. Wang, C.-H. Hsiao, S.-J. Chang, K.-T. Lam, K.-H. Wen, S.-J. Young, S.-C. Hung, B.-R. Huang, CuO nanowire-based humidity sensor. IEEE Sens. 12(6), 1884–1888 (2012)

    CAS  Google Scholar 

  6. M. Ferrández-Rives, Á. Beltrán-Osuna, J. Gómez-Tejedor, J. Gómez Ribelles, Electrospun PVA/bentonite nanocomposites mats fordrug delivery. Materials 10, 1448 (2017)

    Article  Google Scholar 

  7. T.L. da Silva, F.P. de Araujo, E.C. da Silva Filho, M.B. Furtini, J.A. Osajima, Degradation of poly(ethylene oxide) films using crystal violet. Mater. Res. 20, 869–872 (2017)

    Article  Google Scholar 

  8. I.S. Yakubu, Muhammad U and A’isha AM, Humidity sensing study of polyaniline/copper oxide nanocomposites. Int. J. Adv. Acad. Res. Sci. Technol. Eng. 4(5), 49 (2018)

    Google Scholar 

  9. S.B. Wang, C.H. Hsiao, S.J. Chang, K.T. Lam, K.H. Wen, S.J. Young, S.C. Hung, B.R. Huang, CuO nanowire-based humidity sensor. IEEE Sens. J. 12(6), 1884–1888 (2012)

    Article  CAS  Google Scholar 

  10. A. Hashim, A. Hadi, Novel pressure sensors made from nanocomposites (biodegradable polymers–metal oxide nanoparticles): fabrication and characterization. Ukrain J Phys 63(8), 754 (2018). https://doi.org/10.15407/ujpe63.8.754

    Article  Google Scholar 

  11. A. Hashim, A. Hadi, Synthesis and characterization of novel piezoelectric and energy storage nanocomposites: biodegradable materials–magnesium oxide nanoparticles. Ukr. J. Phys. 62(12), 1050–1056 (2017). https://doi.org/10.15407/ujpe62.12.1050

    Article  Google Scholar 

  12. K.J. Kadhim, I.R. Agool, A. Hashim, Effect of zirconium oxide nanoparticles on dielectric properties of (PVA-PEG-PVP) blend for medical application. J. Adv. Phys. 6(2), 187 (2017). https://doi.org/10.1166/jap.2017.1313

    Article  Google Scholar 

  13. K.J. Kadhim, I.R. Agool, A. Hashim, Synthesis of (PVA-PEG-PVP-TiO2) nanocomposites for antibacterial application. Mater. Focus 5(5), 436 (2016). https://doi.org/10.1166/mat.2016.1371

    Article  CAS  Google Scholar 

  14. N.H. Al-Garah, F.L. Rashid, A. Hadi, A. Hashim, Synthesis and characterization of novel (organic–inorganic) nanofluids for antibacterial, antifungal and heat transfer applications. J. Bionanosci. 12, 336 (2018). https://doi.org/10.1166/jbns.2018.1538

    Article  CAS  Google Scholar 

  15. F.L. Rashid, A. Hadi, N.H. Al-Garah, A. Hashim, Novel phase change materials, MgO nanoparticles, and water based nanofluids for thermal energy storage and biomedical applications. Int. J. Pharmaceut. Phytopharmacol. Res. 8(1), 46 (2018)

    CAS  Google Scholar 

  16. H. Ahmed, A. Hashim, H.M. Abduljalil, Analysis of structural, electrical and electronic properties of (polymer nanocomposites/silicon carbide) for antibacterial application. Egypt. J. Chem. 62(4), 1167–1176 (2019). https://doi.org/10.21608/EJCHEM.2019.6241.1522

    Article  Google Scholar 

  17. I.R. Agool, K.J. Kadhim, A. Hashim, Synthesis of (PVA-PEG-PVP-ZrO2) nanocomposites for energy release and gamma shielding applications. Int. J. Plast. Technol. 21(2), 444 (2017). https://doi.org/10.1007/s12588-017-9196-1

    Article  CAS  Google Scholar 

  18. F.L. Rashid, S.M. Talib, A. Hadi, A. Hashim, Novel of thermal energy storage and release: water/(SnO2–TaC) and water/(SnO2–SiC) nanofluids for environmental applications. IOP Conf. Series Mater. Sci. Eng. 454, 012113 (2018). https://doi.org/10.1088/1757-899X/454/1/012113

    Article  Google Scholar 

  19. A. Hadi, F.L. Rashid, H.Q. Hussein, A. Hashim, Novel of water with (CeO2–WC) and (SiC-WC) nanoparticles systems for energy storage and release applications. IOP Conf. Ser. Mater. Sci. Eng. 518(3), 5 (2019). https://doi.org/10.1088/1757-899X/518/3/032059

    Article  Google Scholar 

  20. I.R. Agool, K.J. Kadhim, A. Hashim, Fabrication of new nanocomposites: (PVA-PEG-PVP) blend-zirconium oxide nanoparticles) for humidity sensors. Int. J. Plast. Technol. 21(2), 397 (2017). https://doi.org/10.1007/s12588-017-9192-5

    Article  CAS  Google Scholar 

  21. S. Hadi, A. Hashim, A. Jewad, Optical properties of (PVA-LiF) composites. Aust. J. Basic Appl. Sci. 5(9), 2192–2195 (2011)

    CAS  Google Scholar 

  22. A. Hadi, A. Hashim, Development of a new humidity sensor based on (carboxymethyl cellulose–starch) blend with copper oxide nanoparticles. Ukrain. J. Phys. 62(12), 1044 (2017). https://doi.org/10.15407/ujpe62.12.1044

    Article  Google Scholar 

  23. A. Hashim, Q. Hadi, Structural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensors. J. Mater. Sci.: Mater. Electron. 29, 11598–11604 (2018). https://doi.org/10.1007/s10854-018-9257-z

    Article  CAS  Google Scholar 

  24. A. Hashim, K.H.H. Al-Attiyah, S.F. Obaid, Fabrication of novel (biopolymer blend-lead oxide nanoparticles) nanocomposites: structural and optical properties for low cost nuclear radiation shielding. Ukrain. J. Phys. 64(2), 157 (2019). https://doi.org/10.15407/ujpe64.2.157

    Article  Google Scholar 

  25. I.R. Agool, F.S. Mohammed, A. Hashim, The effect of magnesium oxide nanoparticles on the optical and dielectric properties of (PVA-PAA-PVP) blend. Adv. Environ. Biol. 9(11), 1–11 (2015)

    CAS  Google Scholar 

  26. K.H.H. Al-Attiyah, A. Hashim, S.F. Obaid, Fabrication of novel (carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol)/lead oxide nanoparticles: structural and optical properties for gamma rays shielding applications. Int. J. Plast. Technol. 23(1), 1–7 (2019). https://doi.org/10.1007/s12588-019-09228-5

    Article  CAS  Google Scholar 

  27. A.F. Mansour, A. Elfalaky, F. Abdel Maged, Synthesis, characterization and optical properties of PANI/PVA blends. IOSR J. Appl. Phys. 7(4), 37 (2015)

    Google Scholar 

  28. A. Hashim, Q. Hadi, Synthesis of novel (polymer blend-ceramics) nanocomposites: structural, optical and electrical properties for humidity sensors. J. Inorg. Organomet. Polym Mater. 28(4), 1394–1401 (2018). https://doi.org/10.1007/s10904-018-0837-4

    Article  CAS  Google Scholar 

  29. H. Abduljalil, A. Hashim, A. Jewad, The effect of addition titanium dioxide on electrical properties of poly-methyl methacrylate. Eur. J. Sci. Res. 63(2), 231–235 (2011)

    Google Scholar 

  30. Z. Al-Ramadhan, A. Hashim, A.J. Kadham Algidsawi, The DC electrical properties of (PVC-Al2O3) composites. AIP Conf. Proc. 1400(1), 180 (2011). https://doi.org/10.1063/1.3663109

    Article  CAS  Google Scholar 

  31. A. Hashim, I.R. Agool, K.J. Kadhim, Novel of (polymer blend-Fe3O4) magnetic nanocomposites: preparation and characterization for thermal energy storage and release, gamma ray shielding, antibacterial activity and humidity sensors applications. J. Mater. Sci.: Mater. Electron. 29(12), 10369–10394 (2018). https://doi.org/10.1007/s10854-018-9095-z

    Article  CAS  Google Scholar 

  32. A. Hashim, A. Hadi, Novel lead oxide polymer nanocomposites for nuclear radiation shielding applications. Ukrain. J. Phys. 62(11), 978 (2017). https://doi.org/10.15407/ujpe62.11.0978

    Article  Google Scholar 

  33. A.J. Kadham, D. Hassan, N. Mohammad, A. Hashim, Fabrication of (polymer blend-magnesium oxide) nanoparticle and studying their optical properties for optoelectronic applications. Bull. Electr. Eng. Inform. 7(1), 28 (2018). https://doi.org/10.11591/eei.v7i1.839

    Article  Google Scholar 

  34. R. Srivastava, Effect of poly ethylene glycol on moisture sensing of copper ferrite nanocomposite. Am. J. Sens. Technol. 3(1), 1–4 (2015)

    Google Scholar 

  35. A. Hashim, A. Jassim, Novel of (PVA-ST-PbO2) bio nanocomposites: preparation and properties for humidity sensors and radiation shielding applications. Sens. Lett. 15(12), 1003 (2017). https://doi.org/10.1166/sl.2018.3915

    Article  Google Scholar 

  36. A. Hashim, A. Jassim, Novel of biodegradable polymers-inorganic nanoparticles: structural, optical and electrical properties as humidity sensors and gamma radiation shielding for biological applications. J. Bionanosci. 12, 170 (2018). https://doi.org/10.1166/jbns.2018.1518

    Article  CAS  Google Scholar 

  37. V. Jeseentharani, B. Jeyaraj, J. Pragasam, A. Dayalan, K. Seetharamaiah Nagaraja, Humidity sensing properties of CuO, ZnO and NiO composites. Sens. Transd. J. 113(2), 48 (2010)

    CAS  Google Scholar 

  38. A. Hashim, Z.S. Hamad, Fabrication and characterization of polymer blend doped with metal carbide nanoparticles for humidity sensors. J. Nanostruct. 9(2), 340–348 (2019). https://doi.org/10.22052/JNS.2019.02.016

    Article  Google Scholar 

  39. A. Hashim, A. Hadi, Synthesis and characterization of (MgO–Y2O3–CuO) nanocomposites for novel humidity sensor application. Sens. Lett. 15, 858–861 (2017). https://doi.org/10.1166/sl.2017.3900

    Article  Google Scholar 

  40. H. Abbasian, D. Ghanbari, G. Nabiyouni, Sonochemical-assisted synthesis of copper oxide nanoparticles and its application as humidity sensor. J. Nanostruct. 3, 429 (2013)

    Google Scholar 

  41. S. Kotresh, Y.T. Ravikiran, H.G. Raj Prakash, S.C. VijayaKumari, Polyaniline-titanium dioxide composite as humidity sensor at room temperature. Nanosyst. Phys. Chem. Math. 7(4), 732–739 (2016)

    Article  CAS  Google Scholar 

  42. W. Chunjie, J. Jie, Y. Wang, Effects of surfactants on performance of ZrO2 humidity sensors. Adv. Comput. Sci. Res. 76, 18–23 (2017)

    Google Scholar 

  43. T. Santhaveesuk, K. Siwawongkasem, S. Pommek, S. Choopun, High performance humidity sensor based on ZnO nanoparticles synthesized by co-precipitation method. Appl. Mech. Mater. 848, 99 (2016)

    Article  Google Scholar 

  44. H. Ahmed, H.M. Abduljalil, A. Hashim, Structural, optical and electronic properties of novel (PVA–MgO)/SiC nanocomposites films for humidity sensors. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00111-z

    Article  Google Scholar 

  45. H. Ahmed, H.M. Abduljalil, A. Hashim, Analysis of structural, optical and electronic properties of polymeric nanocomposites/silicon carbide for humidity sensors. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00100-2

    Article  Google Scholar 

  46. A. Hashim, M.A. Habeeb, Synthesis and characterization of polymer blend-CoFe2O4 nanoparticles as a humidity sensors for different temperatures. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-018-0081-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hashim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashim, A., Al-Khafaji, Y. & Hadi, A. Synthesis and Characterization of Flexible Resistive Humidity Sensors Based on PVA/PEO/CuO Nanocomposites. Trans. Electr. Electron. Mater. 20, 530–536 (2019). https://doi.org/10.1007/s42341-019-00145-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-019-00145-3

Keywords

Navigation