Skip to main content
Log in

Microstructural and Mechanical Properties of Microwave Sintered AA7075/Graphite/SiC Hybrid Composite Fabricated by Powder Metallurgy Techniques

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this study, AA7075 matrix hybrid composite containing graphite and SiC particles was fabricated by powder metallurgy techniques. The effect of microwave sintering on the microstructure and mechanical properties of AA7075 + 8%graphite+2%SiC hybrid composite was investigated using SEM integrated with EDS, XRD, tensile-compression, hardness, and porosity tests. The results showed that microwave sintered composite mechanical properties were enhanced compared with conventionally sintered composite. Precise microstructure with no agglomerations and clean interfaces without any secondary phases were observed through SEM-EDS and XRD analysis for microwave sintered composite. Along with enhanced mechanical properties, a strain to fracture value of 7.98% was observed in microwave sintered composite. It was, thus, concluded that microwave sintering is preferable to conventional sintering to fabricate hybrid composites with enhanced performances.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Authors confirm that the entire data obtained during the Experiment was included in this available manuscript.

References

  1. Dey D, Bhowmik A and Biswas A 2020 Effect of SiC content on mechanical and Tribological properties of Al2024-SiC composites silicon.DOI:https://doi.org/10.1007/s12633-020-00757-y

  2. Prasad Reddy A, Vamsi Krishna P and Rao R N 2019 Tribological behaviour of Al6061–2SiC-xGr hybrid metal matrix Nanocomposites fabricated through ultrasonically assisted stir casting technique silicon 11 2853–71.DOI:https://doi.org/10.1007/s12633-019-0072-9

  3. Manohar G, Dey A, Pandey K M and Maity S R 2018 Fabrication of metal matrix composites by powder metallurgy: a review AIP conference proceedings vol 1952https://doi.org/10.1063/1.5032003 (American Institute of Physics Inc.).DOI:https://doi.org/10.1063/1.5032003

  4. Dey A, Pandey KM (2015) Magnesium metal matrix composites-a review rev. Adv Mater Sci 42:58–67

    CAS  Google Scholar 

  5. Stalin B, Sudha G T and Ravichandran M 2018 Investigations on characterization and properties of Al-MoO3 composites synthesized using powder metallurgy technique silicon 10 2663–70.DOI:https://doi.org/10.1007/s12633-018-9803-6

  6. Surya M S and Gugulothu S K 2021 Fabrication, mechanical and Wear characterization of silicon carbide reinforced Aluminium 7075 metal matrix composite silicon.DOI:https://doi.org/10.1007/s12633-021-00992-x

  7. Reddy PS, Kesavan R, Vijaya Ramnath B (2018) Investigation of mechanical properties of Aluminium 6061-silicon carbide. Boron Carbide Metal Matrix Composite Silicon 10:495–502. https://doi.org/10.1007/s12633-016-9479-8

  8. Alhashmy HA, Nganbe M (2015) Laminate squeeze casting of carbon fiber reinforced aluminum matrix composites mater. Des. 67:154–158. https://doi.org/10.1016/j.matdes.2014.11.034

    Article  CAS  Google Scholar 

  9. Jiang L T, Chen G Q, He X D, Zhao M, Xiu Z Y, Fan R J and Wu G H 2009 Microstructure and tensile properties of TiB2p/6061Al composites trans. Nonferrous met. Soc. China (English Ed. 19.DOI:https://doi.org/10.1016/S1003-6326(10)60105-7

  10. DEY A, DEBNATH S and PANDEY K M 2017 Optimization of electrical discharge machining process parameters for Al6061/cenosphere composite using grey-based hybrid approach trans. Nonferrous met. Soc. China (English Ed. 27 998–1010.DOI:https://doi.org/10.1016/S1003-6326(17)60117-1

  11. Melaibari A, Fathy A, Mansouri M, Eltaher MA (2019) Experimental and numerical investigation on strengthening mechanisms of nanostructured Al-SiC composites. J. Alloys Compd 774:1123–1132. https://doi.org/10.1016/j.jallcom.2018.10.007

    Article  CAS  Google Scholar 

  12. Harichandran R, Selvakumar N (2016) Effect of nano/micro B4C particles on the mechanical properties of aluminium metal matrix composites fabricated by ultrasonic cavitation-assisted solidification process arch. Civ. Mech. Eng 16:147–158. https://doi.org/10.1016/j.acme.2015.07.001

    Article  Google Scholar 

  13. Sudha GT, Stalin B, Ravichandran M (2019) Optimization of powder metallurgy parameters to obtain low corrosion rate and high compressive strength in Al-{MoO}3 composites using {SN} ratio and {ANOVA} analysis mater. Res. Express 6:96520. https://doi.org/10.1088/2053-1591/ab2cef

    Article  CAS  Google Scholar 

  14. Manohar G, Maity S R and Pandey K M 2021 Effect of sintering temperatures on mechanical properties of AA7075/B4C/graphite hybrid composite fabricated by powder metallurgy techniques recent advances in mechanical engineering ed K M Pandey, R D Misra, P K Patowari and U S dixit (Singapore: springer Singapore) pp 343–50

  15. Sudha GT, Stalin B, Ravichandran M, Balasubramanian M (2019) Mechanical properties, characterization and Wear behavior of powder metallurgy composites-a review mater. Today Proc 22:2582–2596. https://doi.org/10.1016/j.matpr.2020.03.389

    Article  CAS  Google Scholar 

  16. Hu ZY, Zhang ZH, Cheng XW, Wang FC, Zhang YF, Li SL (2020) A review of multi-physical fields induced phenomena and effects in spark plasma sintering: fundamentals and applications mater. Des. 191:108662. https://doi.org/10.1016/j.matdes.2020.108662

    Article  CAS  Google Scholar 

  17. Manohar G, Pandey KM, Maity SR (2021) Effect of sintering mechanisms on mechanical properties of AA7075/B4C composite fabricated by powder metallurgy techniques. Ceram Int. 47:15147–15154. https://doi.org/10.1016/j.ceramint.2021.02.073

    Article  CAS  Google Scholar 

  18. Viala JC, Bouix J, Gonzalez G, Esnouf C (1997) Chemical reactivity of aluminium with boron carbide. J Mater Sci 32:4559–4573. https://doi.org/10.1023/A:1018625402103

    Article  CAS  Google Scholar 

  19. Azarniya A, Azarniya A, Abdollah-zadeh A, Madaah Hosseini HR, Ramakrishna S (2019) In situ hybrid aluminum matrix composites: a review of phase transformations and mechanical aspects Adv. Eng Mater 21:1801269. https://doi.org/10.1002/adem.201801269

    Article  CAS  Google Scholar 

  20. Dash K, Chaira D, Ray BC (2013) Synthesis and characterization of aluminium-alumina micro- and nano-composites by spark plasma sintering mater. Res Bull 48:2535–2542. https://doi.org/10.1016/j.materresbull.2013.03.014

    Article  CAS  Google Scholar 

  21. Pakdel A, Witecka A, Rydzek G, Awang Shri DN (2017) A comprehensive microstructural analysis of Al–WC micro- and nano-composites prepared by spark plasma sintering mater. Des. 119:225–234. https://doi.org/10.1016/j.matdes.2017.01.064

    Article  CAS  Google Scholar 

  22. Manohar G, Pandey KM, Maity SR (2021) Characterization of boron carbide (B4C) particle reinforced aluminium metal matrix composites fabricated by powder metallurgy techniques – a review mater. Today Proc 45:6882–6888. https://doi.org/10.1016/j.matpr.2020.12.1087

    Article  CAS  Google Scholar 

  23. Prakash C, Singh S, Sharma S, Garg H, Singh J, Kumar H, Singh G (2020) Fabrication of aluminium carbon nano tube silicon carbide particles based hybrid nano-composite by spark plasma sintering mater. Today Proc 21:1637–1642. https://doi.org/10.1016/j.matpr.2019.11.273

    Article  CAS  Google Scholar 

  24. Razavi M, Farajipour A R, Zakeri M, Rahimipour M R and Firouzbakht A R 2017 Production of Al2O3-SiC nano-composites by spark plasma sintering Bol. la Soc. Esp. Ceram. Y Vidr. 56 186–94.DOI:https://doi.org/10.1016/j.bsecv.2017.01.002

  25. Mattli M R, Shakoor A, Matli P R and Mohamed A M A 2019 Microstructure and compressive behavior of Al–Y2O3 nanocomposites prepared by microwave-assisted mechanical alloying metals (Basel). 9 1–9.DOI:https://doi.org/10.3390/met9040414, 9

  26. Ashwath P, Xavior MA (2018) Effect of ceramic reinforcements on microwave sintered metal matrix composites mater. Manuf. Process. 33:7–12. https://doi.org/10.1080/10426914.2016.1244851

    Article  CAS  Google Scholar 

  27. Mattli M, Matli P, Shakoor A, Amer Mohamed A (2019) Structural and mechanical properties of amorphous Si3N4 nanoparticles reinforced Al matrix composites prepared by microwave sintering. Ceramics 2:126–134. https://doi.org/10.3390/ceramics2010012

    Article  CAS  Google Scholar 

  28. Prashantha Kumar HG, Anthony Xavior M (2018) Encapsulation and microwave hybrid processing of Al 6061–Graphene–SiC composites mater. Manuf Process 33:19–25. https://doi.org/10.1080/10426914.2017.1279320

    Article  CAS  Google Scholar 

  29. Akinwekomi AD (2019) Microstructural characterisation and corrosion behaviour of microwave-sintered magnesium alloy AZ61/fly ash microspheres syntactic foams. Heliyon 5:e01531. https://doi.org/10.1016/j.heliyon.2019.e01531

    Article  PubMed  PubMed Central  Google Scholar 

  30. Reddy MP, Shakoor RA, Parande G, Manakari V, Ubaid F, Mohamed AMA, Gupta M (2017) Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques. Prog. Nat. Sci. Mater. Int. 27:606–614. https://doi.org/10.1016/j.pnsc.2017.08.015

    Article  CAS  Google Scholar 

  31. Manohar G, Pandey KM, Maity SR (2020) Aluminium (AA7075) metal matrix composite reinforced with B 4 C Nano particles and effect of individual alloying elements in Al fabricated by powder metallurgy techniques. J Phys Conf Ser 1451:012024. https://doi.org/10.1088/1742-6596/1451/1/012024

    Article  CAS  Google Scholar 

  32. Mohammad Sharifi E, Karimzadeh F, Enayati MH (2011) Fabrication and evaluation of mechanical and tribological properties of boron carbide reinforced aluminum matrix nanocomposites mater. Des. 32:3263–3271. https://doi.org/10.1016/j.matdes.2011.02.033

    Article  CAS  Google Scholar 

  33. Gu W L 2006 Bulk Al/SiC nanocomposite prepared by ball milling and hot pressing method trans. Nonferrous met. Soc. China (English Ed. 16.DOI:https://doi.org/10.1016/S1003-6326(06)60219-7

  34. Sivasankaran S, Sivaprasad K, Narayanasamy R, Satyanarayana PV (2011) X-ray peak broadening analysis of AA 6061100-x-x wt.% Al 2O3 nanocomposite prepared by mechanical alloying mater. Charact. 62:661–672. https://doi.org/10.1016/j.matchar.2011.04.017

    Article  CAS  Google Scholar 

  35. Shukla M, Dhakad SK, Agarwal P, Pradhan MK (2018) Characteristic behaviour of aluminium metal matrix composites: a review mater. Today Proc 5:5830–5836. https://doi.org/10.1016/j.matpr.2017.12.180

    Article  CAS  Google Scholar 

  36. Kannan C, Ramanujam R, Venkatesan K, Dheeraj NV, Raudhraa Sundaresh M, Vimal A (2018) An investigation on the tribological characteristics of Al 7075 based single and hybrid nanocomposites mater. Today Proc. 5:12837–12847. https://doi.org/10.1016/j.matpr.2018.02.268

    Article  CAS  Google Scholar 

  37. Manohar G, Pandey KM, Ranjan Maity S (2020) Effect of compaction pressure on mechanical properties of AA7075/B4C/graphite hybrid composite fabricated by powder metallurgy techniques mater. Today Proc. https://doi.org/10.1016/j.matpr.2020.05.194

  38. Ashwath P, Anthony Xavior M (2014) The effect of ball milling & reinforcement percentage on sintered samples of aluminium alloy metal matrix composites. Procedia Eng. 97:1027–1032. https://doi.org/10.1016/j.proeng.2014.12.380

    Article  CAS  Google Scholar 

  39. Ghasali E, Alizadeh M, Ebadzadeh T, Pakseresht AH, Rahbari A (2015) Investigation on microstructural and mechanical properties of B4C-aluminum matrix composites prepared by microwave sintering. J Mater Res Technol 4:411–415. https://doi.org/10.1016/j.jmrt.2015.02.005

    Article  CAS  Google Scholar 

  40. Kumar Bhoi N, Singh H, Pratap S (2020) Synthesis and characterization of zinc oxide reinforced aluminum metal matrix composite produced by microwave sintering. J Compos Mater 54:3625–3636. https://doi.org/10.1177/0021998320918646

    Article  CAS  Google Scholar 

  41. Saheb N (2013) Spark plasma and microwave sintering of Al6061 and Al2124 alloys. Int J Miner Metall Mater 20:152–159. https://doi.org/10.1007/s12613-013-0707-6

    Article  CAS  Google Scholar 

  42. Ravi Kumar K, Kiran K, Sreebalaji VS (2017) Micro structural characteristics and mechanical behaviour of aluminium matrix composites reinforced with titanium carbide. J. Alloys Compd 723:795–801. https://doi.org/10.1016/j.jallcom.2017.06.309

    Article  CAS  Google Scholar 

  43. Kaftelen H, Öveçoĝlu ML, Henein H, Çimenoĝlu H (2010) ZrC particle reinforced Al-4wt.% cu alloy composites fabricated by mechanical alloying and vacuum hot pressing: microstructural evaluation and mechanical properties mater. Sci. Eng A 527:5930–5938. https://doi.org/10.1016/j.msea.2010.06.007

    Article  CAS  Google Scholar 

  44. Sivasankaran S, Sivaprasad K, Narayanasamy R, Iyer VK (2010) Synthesis, structure and sinterability of 6061 AA100-x-x wt.% TiO2 composites prepared by high-energy ball milling. J. Alloys Compd 491:712–721. https://doi.org/10.1016/j.jallcom.2009.11.051

    Article  CAS  Google Scholar 

  45. Erdemir F, Canakci A and Varol T 2015 Microstructural characterization and mechanical properties of functionally graded Al2024/SiC composites prepared by powder metallurgy techniques trans. Nonferrous met. Soc. China (English Ed. 25 3569–77.DOI:https://doi.org/10.1016/S1003-6326(15)63996-6, 25, 3569, 3577

  46. Liu R, Wu C, Zhang J, Luo G, Shen Q, Zhang L (2018) Microstructure and mechanical behaviors of the ultrafine grained AA7075/B4C composites synthesized via one-step consolidation. J. Alloys Compd 748:737–744. https://doi.org/10.1016/j.jallcom.2018.03.152

  47. Sarkari Khorrami M, Samadi S, Janghorban Z, Movahedi M (2015) In-situ aluminum matrix composite produced by friction stir processing using FE particles mater. Sci. Eng A 641:380–390. https://doi.org/10.1016/j.msea.2015.06.071

    Article  CAS  Google Scholar 

  48. Hoseini M, Meratian M (2009) Fabrication of in situ aluminum-alumina composite with glass powder. J. Alloys Compd 471:378–382. https://doi.org/10.1016/j.jallcom.2008.03.103

    Article  CAS  Google Scholar 

  49. Lu L, Lai MO, Zhang S (1997) Diffusion in mechanical alloying. J Mater Process Technol 67:100–104. https://doi.org/10.1016/S0924-0136(96)02826-9

    Article  Google Scholar 

  50. Tiwari SK, Soni S, Rana RS, Singh A (2017) Effect of heat treatment on mechanical properties of Aluminium alloy-Fly ash metal matrix composite mater. Today Proc. 4:3458–3465. https://doi.org/10.1016/j.matpr.2017.02.235

    Article  Google Scholar 

  51. Sarada BN, Murthy PLS, Ugrasen G (2015) Hardness and Wear characteristics of hybrid Aluminium metal matrix composites produced by stir casting technique mater. Today Proc 2:2878–2885. https://doi.org/10.1016/j.matpr.2015.07.305

    Article  CAS  Google Scholar 

  52. TENG F, Yu K, LUO J, FANG H jie, SHI C li, DAI Y long and XIONG H qing 2016 Microstructures and properties of Al–50%SiC composites for electronic packaging applications Trans. Nonferrous Met. Soc. China (English Ed. 26 2647–52.DOI:https://doi.org/10.1016/S1003-6326(16)64358-3

  53. Canakci A, Varol T (2014) Microstructure and properties of AA7075/Al-SiC composites fabricated using powder metallurgy and hot pressing. Powder Technol 268:72–79. https://doi.org/10.1016/j.powtec.2014.08.016

    Article  CAS  Google Scholar 

  54. Saravana Kumar M, Pruncu C I, Harikrishnan P, Rashia Begum S and Vasumathi M 2021 Experimental investigation of in-homogeneity in particle distribution during the processing of metal matrix composites silicon.DOI:https://doi.org/10.1007/s12633-020-00886-4

  55. Zhang Z, Chen DL (2006) Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength Scr. Mater. 54:1321–1326. https://doi.org/10.1016/j.scriptamat.2005.12.017

    Article  CAS  Google Scholar 

  56. Wang H, Li G, Zhao Y, Chen G (2010) In situ fabrication and microstructure of Al2O3 particles reinforced aluminum matrix composites mater. Sci. Eng A 527:2881–2885. https://doi.org/10.1016/j.msea.2010.01.022

    Article  CAS  Google Scholar 

  57. Zhang L, Wang Z, Li Q, Wu J, Shi G, Qi F, Zhou X (2018) Microtopography and mechanical properties of vacuum hot pressing Al/B4C composites Ceram. Int. 44:3048–3055. https://doi.org/10.1016/j.ceramint.2017.11.065

    Article  CAS  Google Scholar 

  58. ALIZADEH A, ABDOLLAHI A and RADFAR M J 2017 Processing, characterization, room temperature mechanical properties and fracture behavior of hot extruded multi-scale B4C reinforced 5083 aluminum alloy based composites trans. Nonferrous met. Soc. China (English Ed. 27 1233–47.DOI:https://doi.org/10.1016/S1003-6326(17)60144-4

  59. Prakash J, Gopalakannan S, Chakravarthy VK (2021) Mechanical characterization studies of Aluminium alloy 7075 based Nanocomposites silicon. https://doi.org/10.1007/s12633-021-00979-8

  60. Zhang J, Shi H, Cai M, Liu L, Zhai P (2009) The dynamic properties of SiCp/Al composites fabricated by spark plasma sintering with powders prepared by mechanical alloying process mater. Sci. Eng. A 527:218–224. https://doi.org/10.1016/j.msea.2009.08.067

    Article  CAS  Google Scholar 

  61. Stalin B, Vidhya VS, Ravichandran M, Naresh Kumar A, Sudha GT (2020) Characterization and properties of mg–TiO2 composites produced via ball milling and powder metallurgy. Metallofiz Noveishie Tekhnol 42(4):497–509. https://doi.org/10.15407/mfint.42.04.0497

Download references

Author information

Authors and Affiliations

Authors

Contributions

Guttikonda Manohar: Conceptualization, Methodology, Data curation, Writing- Investigation, Original draft preparation. K M Pandey & S R Maity: Reviewing, Editing, Validation, Visualization, and Supervision.

Corresponding author

Correspondence to S R Maity.

Ethics declarations

Conflict of interest.

Authors declared that they have no conflict of interest.

Ethical Approval.

Ethics Approval All experiments were conducted ethically and no issues regarding ethical issues arouse during the experiments or the manuscript confection. The Authors declare that they don’t have known personal relationships or competing financial interest that could have appeared to influence the work reported in this manuscript.

Research Involving Human Participants and/or Animals.

Not applicable.

Informed Consent.

Not applicable.

Consent to Participate.

All the Authors are happily agree to contribute in this research work.

Consent for Publication.

Consent was obtained from all authors to publish this manuscript. All the authors read and approved this manuscript to publish this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manohar, G., Maity, S.R. & Pandey, K.M. Microstructural and Mechanical Properties of Microwave Sintered AA7075/Graphite/SiC Hybrid Composite Fabricated by Powder Metallurgy Techniques. Silicon 14, 5179–5189 (2022). https://doi.org/10.1007/s12633-021-01299-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01299-7

Keywords

Navigation