Skip to main content
Log in

Nutritional and Structural Role of Silicon in Attenuating Aluminum Toxicity in Sugarcane Plants

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Purpose

We investigated the interactive role of Si-mediated attenuation to aluminum (Al) toxicity in two sugarcane cultivars (‘CTC9002’ and ‘CTC9003’) grown in hydroponic conditions.

Methods

Two pot experiments were distributed in randomized blocks in a factorial design (4 × 2) with four replications. The treatments consisted of 0, 10, 15, and 20 mg L−1 Al (as aluminum sulfate [Al2 (SO4)3·18H2O)], which were combined with the absence and presence of Si [(2.0 mmol L−1 as potassium silicate (K2SiO3)].

Results

Both sugarcane cultivars (‘CTC9002’ and ‘CTC9003’) were affected by Al toxicity (above 10 mg L−1), resulting in nutritional disorders and decreasing plant growth, which were drastically reversed by Si addition in the growth medium. Si supplementation decrease Al concentration and translocation to the shoots of both cultivars when Al and Si were simultaneously supplied in the growth medium. We demonstrated that in shoots of both sugarcane seedlings, Si concentration are positively related to the lignin concentrations (ranging from 12.0% to 41% in cv. ‘CTC9002’ and 12% to 47% in cv. ‘CTC9003’). In addition, Si fertilization enhanced mineral nutrition and use efficiency of macros- and micronutrients, irrespective of the cultivar. Therefore, the use of cultivar ‘CTC9003’ under Si fertilization is more recommended to cope with the adverse effect caused by Al stress.

Conclusions

The findings of this study suggest that Si fertilization in sugarcane seedlings is an economic and viable strategy strongly recommended to cope with the adverse effect caused by Al toxicity at concentrations less than 20 mg L−1, which lead to increase the shoot biomass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Adrees M, Ali S, Rizwan M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197. https://doi.org/10.1016/J.ECOENV.2015.05.011

    Article  CAS  PubMed  Google Scholar 

  2. Arunakumara KKIU, Walpola BC, Yoon MH (2013) Aluminum toxicity and tolerance mechanism in cereals and legumes – a review. J Korean Soc Appl Biol Chem 56:1–9. https://doi.org/10.1007/s13765-012-2314-z

    Article  Google Scholar 

  3. Ashraf M, Afzal M, Ahmed R et al (2010) Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.). Plant Soil 326:381–391. https://doi.org/10.1007/s11104-009-0019-9

    Article  CAS  Google Scholar 

  4. Balestrasse KB, Gallego SM, Tomaro ML (2006) Aluminium stress affects nitrogen fixation and assimilation in soybean (Glycine max L.). Plant Growth Regul 48:271–281. https://doi.org/10.1007/s10725-006-0010-x

    Article  CAS  Google Scholar 

  5. Barceló J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48:75–92. https://doi.org/10.1016/S0098-8472(02)00013-8

    Article  Google Scholar 

  6. Bataglia OC, Teixeira JPF, Furlani PR et al (1983) Métodos de análise química de plantas.1st edn. Instituto Agronômico de Campinas, Campinas

    Google Scholar 

  7. Brackhage C, Schaller J, Bäucker E, Dudel EG (2013) Silicon availability affects the stoichiometry and content of calcium and micro nutrients in the leaves of common reed. Silicon 5:199–204. https://doi.org/10.1007/s12633-013-9145-3

    Article  CAS  Google Scholar 

  8. Calero Hurtado A, Chiconato DA, de Prado RM et al (2019) Silicon attenuates sodium toxicity by improving nutritional efficiency in sorghum and sunflower plants. Plant Physiol Biochem 142:224–233. https://doi.org/10.1016/j.plaphy.2019.07.010

    Article  CAS  PubMed  Google Scholar 

  9. Calero Hurtado A, Chiconato DA, de Prado RM et al (2020) Different methods of silicon application attenuate salt stress in sorghum and sunflower by modifying the antioxidative defense mechanism. Ecotoxicol Environ Saf 203:110964. https://doi.org/10.1016/j.ecoenv.2020.110964

    Article  CAS  PubMed  Google Scholar 

  10. Castanho RB, Souto TS (2013) A importância da orizicultura na constituição do espaço geográfico: evolução e dinâmica da produção de arroz no período de 1930 a 2010 em Ituiutaba (Minas Gerais – MG, Brasil) e a inserção de novas culturas. Cuad Geogr Rev Colomb Geogr 23:93–107. https://doi.org/10.15446/rcdg.v23n1.32465

    Article  Google Scholar 

  11. Clark RB (1975) Characterization of phosphatase of intact maize roots. J Agric Food Chem 23:458–460. https://doi.org/10.1021/jf60199a002

    Article  CAS  PubMed  Google Scholar 

  12. Cocker KM, Evans DE, Hodson MJ (1998) The amelioration of aluminium toxicity by silicon in higher plants: solution chemistry or an in planta mechanism? Physiol Plant 104:608–614. https://doi.org/10.1034/j.1399-3054.1998.1040413.x

    Article  CAS  Google Scholar 

  13. Debona D, Rodrigues FA, Datnoff LE (2017) Silicon’s role in abiotic and biotic plant stresses. Annu Rev Phytopathol 55:85–107. https://doi.org/10.1146/annurev-phyto-080516-035312

    Article  CAS  PubMed  Google Scholar 

  14. Deshmukh R, Sonah H, Belanger R (2020) New evidence defining the evolutionary path of aquaporins regulating silicon uptake in land plants. J Exp Bot 71:eraa342. https://doi.org/10.1093/jxb/eraa342

    Article  CAS  Google Scholar 

  15. Deus ACF, de Mello PR, de Cássia Félix Alvarez R et al (2020) Role of silicon and salicylic acid in the mitigation of nitrogen deficiency stress in rice plants. Silicon 12:997–1005. https://doi.org/10.1007/s12633-019-00195-5

    Article  CAS  Google Scholar 

  16. Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:1–18. https://doi.org/10.1155/2015/756120

    Article  Google Scholar 

  17. Emamverdian A, Ding Y, Xie Y, Sangari S (2018) Silicon mechanisms to ameliorate heavy metal stress in plants. Biomed Res Int 2018:1–10. https://doi.org/10.1155/2018/8492898

    Article  CAS  Google Scholar 

  18. Ferrarese MLL, Zottis A, Ferrarese-Filho O (2002) Protein-free quantification in soybean (Glycine max) roots. Biologia (Bratisl) 57:541–543

    CAS  Google Scholar 

  19. Fleck AT, Nye T, Repenning C et al (2010) Silicon enhances suberization and lignification in roots of rice (Oryza sativa). J Exp Bot 62:2001–2011

    Article  Google Scholar 

  20. Fleck AT, Schulze S, Hinrichs M, Specht A, Waßmann F, Schreiber L, Schenk MK (2015) Silicon promotes exodermal casparian band formation in Si-accumulating and Si-excluding species by forming phenol complexes. PLoS One 10:e0138555. https://doi.org/10.1371/journal.pone.0138555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Freitas LB, Fernandes DM, Maia SCM, Fernandes AM (2017) Effects of silicon on aluminum toxicity in upland rice plants. Plant Soil 420:263–275. https://doi.org/10.1007/s11104-017-3397-4

    Article  CAS  Google Scholar 

  22. Geraldo Oliveira E, Miziara F, Ferreira ME (2014) Fatores determinantes e cenários futuros sobre a expansão da cana-de-açúcar na região de Cerrado no Centro-Oeste mineiro. Ateliê Geográfico 9:79–103. https://doi.org/10.5216/ag.v9i1.29101

    Article  Google Scholar 

  23. Hashemi A, Abdolzadeh A, Sadeghipour HR (2010) Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L., plants. Soil Sci Plant Nutr 56:244–253. https://doi.org/10.1111/j.1747-0765.2009.00443.x

    Article  CAS  Google Scholar 

  24. Haynes RJ (2014) A contemporary overview of silicon availability in agricultural soils. J Plant Nutr Soil Sci 177:831–844. https://doi.org/10.1002/jpln.201400202

    Article  CAS  Google Scholar 

  25. Hernandez-Apaolaza L (2014) Can silicon partially alleviate micronutrient deficiency in plants? A review. Planta 240:447–458. https://doi.org/10.1007/s00425-014-2119-x

    Article  CAS  PubMed  Google Scholar 

  26. Hodson MJ, Evans DE (2020) Aluminium/silicon interactions in higher plants- an update. J Exp bot eraa024. 71:6719–6729. https://doi.org/10.1093/jxb/eraa024

  27. Hurtado AC, Chiconato DA, de Mello PR et al (2021) Silicon alleviates sodium toxicity in sorghum and sunflower plants by enhancing ionic homeostasis in roots and shoots and increasing dry matter accumulation. Silicon 13:475–486. https://doi.org/10.1007/s12633-020-00449-7

    Article  CAS  Google Scholar 

  28. Inanaga S, Okasaka A, Tanaka S (1995) Does silicon exist in association with organic compounds in rice plant? Soil Sci Plant Nutr 41:111–117. https://doi.org/10.1080/00380768.1995.10419564

    Article  CAS  Google Scholar 

  29. Klotzbücher T, Klotzbücher A, Kaiser K, Vetterlein D, Jahn R, Mikutta R (2018) Variable silicon accumulation in plants affects terrestrial carbon cycling by controlling lignin synthesis. Glob Chang Biol 24:e183–e189. https://doi.org/10.1111/gcb.13845

    Article  PubMed  Google Scholar 

  30. Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493. https://doi.org/10.1146/annurev.arplant.55.031903.141655

    Article  CAS  PubMed  Google Scholar 

  31. Kopittke PM, Gianoncelli A, Kourousias G, Green K, McKenna BA (2017) Alleviation of Al toxicity by Si is associated with the formation of Al–Si complexes in root tissues of Sorghum. Front Plant Sci 8:2189. https://doi.org/10.3389/fpls.2017.02189

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kostic L, Nikolic N, Bosnic D, Samardzic J, Nikolic M (2017) Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant Soil 419:447–455. https://doi.org/10.1007/s11104-017-3364-0

    Article  CAS  Google Scholar 

  33. Kraska JE, Breitenbeck GA (2010) Simple, robust method for quantifying silicon in plant tissue. Commun Soil Sci Plant Anal 41:2075–2085. https://doi.org/10.1080/00103624.2010.498537

    Article  CAS  Google Scholar 

  34. Li H, Zhu Y, Hu Y, Han W, Gong H (2015) Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiol Plant 37:1–9. https://doi.org/10.1007/s11738-015-1818-7

    Article  CAS  Google Scholar 

  35. Liang Y, Yang C, Shi H (2001) Effects of silicon on growth and mineral composition of barley grown under toxic levels of aluminum. J Plant Nutr 24:229–243. https://doi.org/10.1081/PLN-100001384

    Article  CAS  Google Scholar 

  36. Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428. https://doi.org/10.1016/j.envpol.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  37. Ma JF (2004) Characterization of the system and molecular mapping of the silicon transporter gene in rice. Plant Physiol 136:3284–3289. https://doi.org/10.1104/pp.104.047365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397. https://doi.org/10.1016/j.tplants.2006.06.007

    Article  CAS  PubMed  Google Scholar 

  39. Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057

    Article  CAS  Google Scholar 

  40. Miles N, Manson AD, Rhodes R, van Antwerpen R, Weigel A (2014) Extractable silicon in soils of the south African sugar industry and relationships with crop uptake. Commun Soil Sci Plant Anal 45:2949–2958. https://doi.org/10.1080/00103624.2014.956881

    Article  CAS  Google Scholar 

  41. Moreira-Vilar FC, de Siqueira-Soares RC, Finger-Teixeira A et al (2014) The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than Klason and Thioglycolic acid methods. PLoS One 9:e110000. https://doi.org/10.1371/journal.pone.0110000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Olivera D, Prado R, Lizcano R et al (2019) Silicon supplementation alleviates ammonium toxicity in sugar beet (Beta vulgaris L.). J Soil Sci Plant Nutr 19:413–419. https://doi.org/10.1007/s42729-019-00043-w

    Article  CAS  Google Scholar 

  43. Panda Anjib K, Baluška F (2015) Aluminum stress adaptation in plants.1st edn. Springer, Cham, Switzerland

    Book  Google Scholar 

  44. Penning de Vries FWT, Brunsting AHM, Van Laar HH (1994) Products, requirements and efficiency of biosynthesis a quantitative approach. J Theor Biol 45:339–377. https://doi.org/10.1016/0022-5193(74)90119-2

    Article  Google Scholar 

  45. Pontigo S, Ribera A, Gianfreda L, de la Luz Mora M, Nikolic M, Cartes P (2015) Silicon in vascular plants: uptake, transport and its influence on mineral stress under acidic conditions. Planta 242:23–37. https://doi.org/10.1007/s00425-015-2333-1

    Article  CAS  PubMed  Google Scholar 

  46. Pontigo S, Godoy K, Jiménez H, Gutiérrez-Moraga A, Mora ML, Cartes P (2017) Silicon-mediated alleviation of aluminum toxicity by modulation of al/si uptake and antioxidant performance in ryegrass plants. Front Plant Sci 8:642. https://doi.org/10.3389/fpls.2017.00642

    Article  PubMed  PubMed Central  Google Scholar 

  47. Qian L, Chen B, Chen M (2016) Novel alleviation mechanisms of aluminum phytotoxicity via released Biosilicon from Rice straw-derived biochars. Sci Rep 6:1–11. https://doi.org/10.1038/srep29346

    Article  Google Scholar 

  48. R Core Team (2019) R: a language and environment for statistical computing; 2015. 4

  49. Rahman M, Lee S-H, Ji H, Kabir A, Jones C, Lee KW (2018) Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: current status and opportunities. Int J Mol Sci 19:3073. https://doi.org/10.3390/ijms19103073

    Article  CAS  PubMed Central  Google Scholar 

  50. Ribera-Fonseca A, Rumpel C, de la Mora ML et al (2018) Sodium silicate and calcium silicate differentially affect silicon and aluminium uptake, antioxidant performance and phenolics metabolism of ryegrass in an acid Andisol. Crop Pasture Sci 69:205. https://doi.org/10.1071/CP17202

    Article  CAS  Google Scholar 

  51. Sasaki M, Yamamoto Y, Matsumoto H (1996) Lignin deposition induced by aluminum in wheat (Triticum aestivum) roots. Physiol Plant 96:193–198. https://doi.org/10.1111/j.1399-3054.1996.tb00201.x

    Article  CAS  Google Scholar 

  52. Schaller J, Brackhage C, Dudel EG (2012) Silicon availability changes structural carbon ratio and phenol content of grasses. Environ Exp Bot 77:283–287. https://doi.org/10.1016/j.envexpbot.2011.12.009

    Article  CAS  Google Scholar 

  53. Sheng H, Chen S (2020) Plant silicon-cell wall complexes: identification, model of covalent bond formation and biofunction. Plant Physiol Biochem 155:13–19. https://doi.org/10.1016/j.plaphy.2020.07.020

    Article  CAS  PubMed  Google Scholar 

  54. Shi G, Cai Q, Liu C, Wu L (2010) Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul 61:45–52. https://doi.org/10.1007/s10725-010-9447-z

    Article  CAS  Google Scholar 

  55. Silva S (2012) Aluminium toxicity targets in plants. J Bot 2012:1–8. https://doi.org/10.1155/2012/219462

    Article  CAS  Google Scholar 

  56. da Silva RG, Rosa-Santos TM, de Castro França S et al (2019) Microtranscriptome analysis of sugarcane cultivars in response to aluminum stress. PLoS One 14:e0217806. https://doi.org/10.1371/journal.pone.0217806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Singh VP, Tripathi DK, Kumar D, Chauhan DK (2011) Influence of exogenous silicon addition on aluminium tolerance in rice seedlings. Biol Trace Elem Res 144:1260–1274. https://doi.org/10.1007/s12011-011-9118-6

    Article  CAS  PubMed  Google Scholar 

  58. Singh S, Tripathi DK, Singh S, Sharma S, Dubey NK, Chauhan DK, Vaculík M (2017) Toxicity of aluminium on various levels of plant cells and organism: a review. Environ Exp Bot 137:177–193. https://doi.org/10.1016/j.envexpbot.2017.01.005

    Article  CAS  Google Scholar 

  59. de Sousa A, Saleh AM, Habeeb TH, Hassan YM, Zrieq R, Wadaan MAM, Hozzein WN, Selim S, Matos M, AbdElgawad H (2019) Silicon dioxide nanoparticles ameliorate the phytotoxic hazards of aluminum in maize grown on acidic soil. Sci Total Environ 693:133636. https://doi.org/10.1016/j.scitotenv.2019.133636

    Article  CAS  PubMed  Google Scholar 

  60. UDOP (2021) CTC launches variety of sugarcane that produce more adaptable to the Brazilian cerrado

  61. Vaculík M, Lukačová Z, Bokor B, Martinka M, Tripathi DK, Lux A (2020) Alleviation mechanisms of metal(loid) stress in plants by silicon: a review. J Exp bot eraa288. 71:6744–6757. https://doi.org/10.1093/jxb/eraa288

  62. Vega I, Nikolic M, Pontigo S, Godoy K, Mora MLL, Cartes P (2019) Silicon improves the production of high antioxidant or structural phenolic compounds in barley cultivars under aluminum stress. Agronomy 9:388. https://doi.org/10.3390/agronomy9070388

    Article  CAS  Google Scholar 

  63. Vega I, Rumpel C, Ruíz A, Mora ML, Calderini DF, Cartes P (2020) Silicon modulates the production and composition of phenols in barley under aluminum stress. Agronomy 10:1138. https://doi.org/10.3390/agronomy10081138

    Article  CAS  Google Scholar 

  64. Wang C, Wood FA (1973) A modified aluminon reagent for the determination of aluminum after HNO3–H2SO4 digestion. Can J Soil Sci 53:237–239. https://doi.org/10.4141/cjss73-035

    Article  CAS  Google Scholar 

  65. Wang Y, Stass A, Horst WJ (2004) Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol 136:3762–3770. https://doi.org/10.1104/pp.104.045005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Weber F, Liao W, Barrantes A et al (2019) Silicate-phenolic networks: coordination-mediated deposition of bioinspired tannic acid coatings. Chem Eur J 25:9870–9874. https://doi.org/10.1002/chem.201902358

    Article  CAS  PubMed  Google Scholar 

  67. Williams RJP (1986) Introduction to silicon chemistry and biochemistry. In: Silicon biochemistry, 1st ed. Wiley., Hoboken, NJ, USA, pp. 24–29

  68. Xia S, Song Z, Van Zwieten L et al (2020) Silicon accumulation controls carbon cycle in wetlands through modifying nutrients stoichiometry and lignin synthesis of Phragmites australis. Environ Exp Bot 175:104058. https://doi.org/10.1016/j.envexpbot.2020.104058

    Article  CAS  Google Scholar 

  69. Zhang J, He Z, Tian H, Zhu G, Peng X (2007) Identification of aluminium-responsive genes in rice cultivars with different aluminium sensitivities. J Exp Bot 58:2269–2278. https://doi.org/10.1093/jxb/erm110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) (Finance Code 001). We would also like to thank São Paulo State University—UNESP, School of Agricultural and Veterinarian Sciences—FCAV, for providing the facilities necessary for this research.

Code Availability

Not applicable.

Funding

The project was financially supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) – Brazil [Finance Code 001].

Author information

Authors and Affiliations

Authors

Contributions

DMMS and GSSJ designed the idea and planned the experiments. GSSJ and JPSJ conducted the experiments. GSSJ, DMMS, JPSJ, and ACH helped conduct parts of the experiments and analyses. DMMS, RMP, and JPSJ contributed reagents/materials/analysis tools. JPSJ assisted with the management and analysis of Si. GSSJ and ACH carried out the statistical analysis. GSSJ, DMMS, RMP, and ACH contributed to data interpretation and validation. GSSJ acquired funding. ACH and GSSJ wrote the first draft of the manuscript, and all authors contributed to the editing of the manuscript. All the authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Gilmar da Silveira Sousa Junior.

Ethics declarations

Ethics Approval and Consent to Participate

No animal or human subjects were used in this work. This manuscript is an original paper and has not been published in other journals. The authors agreed to keep the copyright rule.

Consent for Publication

This manuscript does not contain any individual person’s data. The authors agreed to the publication of the manuscript in this journal.

Conflicts of Interest/Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa Junior, G.d., Calero Hurtado, A., de Souza Junior, J.P. et al. Nutritional and Structural Role of Silicon in Attenuating Aluminum Toxicity in Sugarcane Plants. Silicon 14, 5041–5055 (2022). https://doi.org/10.1007/s12633-021-01294-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01294-y

Keywords

Navigation