Skip to main content
Log in

Functionalized Nanosilica for Vulcanization Efficiency and Mechanical Properties of Natural Rubber Composites

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Accelerator functional character was introduced on nanosilica by chemical reaction of sodium isopropyl xanthate (SIPX) with nanosilica (NS). Functional characteristics of nanosilica were confirmed by elemental analysis, thermogravimetric analysis, and infrared spectroscopy. This SIPX functionalized nanosilica (SIPX-NS) incorporated natural rubber (NR) composites were used to evaluate the dispersion of silica in rubber and also the interaction between rubber and filler. The finely dispersed SIPX-NS particles in the NR matrix are revealed from the morphological analysis. Subtle changes in the surface chemistry of silica had a profound influence on dispersibility in the NR matrix. NR 4SIPX-NS composite showed an increase in tensile strength by 10%, flex crack initiation resistance by 13%, tensile strength retention by 16% and cure time reduced by 2 min relative to those of NR 3NS composite. This simple, efficient and cost-effective surface modification of silica improved the vulcanization efficiency and mechanical performance of NR composites and has great potential in the fabrication of high-performance polymer composites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu D, Jia Z, Zhong B, Chen Y, Luo Y, Jia D (2016) A facile and green preparation of nanosilica-supported antioxidant and its reinforcement and antioxidation effect on styrene-butadiene rubber. Int J Polym Anal Charact 21:185–197. https://doi.org/10.1080/1023666X.2016.1132125

    Article  CAS  Google Scholar 

  2. Li Y, Han B, Liu L, Zhang F, Zhang L, Wen S, Lu Y, Yang H, Shen J (2013) Surface modification of silica by two-step method and properties of solution styrene butadiene rubber (SSBR) nanocomposites filled with modified silica. Compos Sci Technol 88:69–75. https://doi.org/10.1016/j.compscitech.2013.08.029

    Article  CAS  Google Scholar 

  3. Surya I, Ismail H, Azura AR (2014) The comparison of alkanolamide and silane coupling agent on the properties of silica- filled natural rubber ( SMR-L ) compounds. Polym Test 40:24–32. https://doi.org/10.1016/j.polymertesting.2014.08.007

    Article  CAS  Google Scholar 

  4. Ahans-Detlef Luginsland D (n.d.) Joachim Frohlich, Andre Wehmeier AG, influence of different silanes on the reinforcement of silica-filled rubber compounds. Rubber Chem Technol 75:563–580

  5. Zheng J, Han D, Zhao S, Ye X, Wang Y, Wu Y, Dong D, Liu J, Wu X, Zhang L (2018) Constructing a multiple covalent Interface and isolating a dispersed structure in silica/rubber nanocomposites with excellent dynamic performance. ACS Appl Mater Interfaces 10:19922–19931. https://doi.org/10.1021/acsami.8b02358

    Article  CAS  PubMed  Google Scholar 

  6. Qiao B, Liang Y, Wang TJ, Jiang Y (2016) Surface modification to produce hydrophobic nano-silica particles using sodium dodecyl sulfate as a modifier. Appl Surf Sci 364:103–109. https://doi.org/10.1016/j.apsusc.2015.12.116

    Article  CAS  Google Scholar 

  7. Lei H, Huang G, Weng G (2013) Synthesis of a new nanosilica-based antioxidant and its influence on the anti-oxidation performance of natural rubber. J Macromol Sci Part B Phys 52:84–94. https://doi.org/10.1080/00222348.2012.695560

    Article  CAS  Google Scholar 

  8. Sondi I, Fedynyshyn TH, Sinta R, Matijević E (2000) Encapsulation of nanosized silica by in situ polymerization of tert-butyl acrylate monomer. Langmuir. 16:9031–9034. https://doi.org/10.1021/la000618m

    Article  CAS  Google Scholar 

  9. Espiard P, Guyot A, Perez J, Vigier G, David L (1995) Poly(ethyl acrylate) latexes encapsulating nanoparticles of silica: 3. Morphology and mechanical properties of reinforced films. Polymer (Guildf) 36:4397–4403. https://doi.org/10.1016/0032-3861(95)96845-Y

    Article  CAS  Google Scholar 

  10. Vilmin F, Bottero I, Travert A, Malicki N, Gaboriaud F, Trivella A, Thibault-Starzyk F (2014) Reactivity of bis[3-(triethoxysilyl)propyl] tetrasulfide (TESPT) silane coupling agent over hydrated silica: operando IR spectroscopy and chemometrics study. J Phys Chem C 118:4056–4071. https://doi.org/10.1021/jp408600h

    Article  CAS  Google Scholar 

  11. Zhang H, Gao Y, Li F, Zhang Z, Liu Y, Zhao G (2016) Influence of silane coupling agents on vulcanised natural rubber: dynamic properties and heat buildup. Plast Rubber Compos 45:9–15. https://doi.org/10.1080/14658011.2015.1112518

    Article  CAS  Google Scholar 

  12. Chen L, Jia Z, Tang Y, Wu L, Luo Y, Jia D (2017) Novel functional silica nanoparticles for rubber vulcanization and reinforcement. Compos Sci Technol 144:11–17. https://doi.org/10.1016/j.compscitech.2016.11.005

    Article  CAS  Google Scholar 

  13. Zhong B, Jia Z, Hu D, Luo Y, Jia D, Liu F (2017) Enhancing interfacial interaction and mechanical properties of styrene-butadiene rubber composites via silica-supported vulcanization accelerator. Compos. Part A Appl. Sci. Manuf. 96:129–136. https://doi.org/10.1016/j.compositesa.2017.02.016

    Article  CAS  Google Scholar 

  14. Mathew G, Huh MY, Rhee JM, Lee MH, Nah C (2004) Improvement of properties of silica-filled styrene-butadiene rubber composites through plasma surface modification of silica. Polym Adv Technol 15:400–408. https://doi.org/10.1002/pat.482

    Article  CAS  Google Scholar 

  15. Wang X, Wang P, Jiang Y, Su Q, Zheng J (2014) Facile surface modification of silica nanoparticles with a combination of noncovalent and covalent methods for composites application. Compos Sci Technol 104:1–8. https://doi.org/10.1016/j.compscitech.2014.08.027

    Article  CAS  Google Scholar 

  16. Weng P, Tang Z, Huang J, Wu S, Guo B (2019) Promoted dispersion of silica and interfacial strength in rubber/silica composites by grafting with oniums. J Appl Polym Sci 48243:48243. https://doi.org/10.1002/app.48243

    Article  CAS  Google Scholar 

  17. Liu J, Cheng Y, Xu K, An L, Su Y, Li X, Zhang Z (2018) Effect of nano-silica filler on microstructure and mechanical properties of polydimethylsiloxane-based nanocomposites prepared by “inhibition-grafting” method. Compos Sci Technol 167:355–363. https://doi.org/10.1016/j.compscitech.2018.08.014

    Article  CAS  Google Scholar 

  18. Guo B, Chen F, Lei Y, Chen W (2010) Significantly improved performance of rubber/silica composites by addition of sorbic acid. Polym J 42:319–326. https://doi.org/10.1038/pj.2010.4

    Article  CAS  Google Scholar 

  19. Gill YQ, Saeed F, Irfan MS, Ehsan H, Shakoor A (2018) Hybrid NBR/chitosan/Nano-Silanised silica based green rubber products. J Rubber Res 21:194–208. https://doi.org/10.1007/bf03449170

    Article  CAS  Google Scholar 

  20. Taylor P, Attharangsan S, Ismail H, Bakar MA, Ismail J (2014) The Effect of Rice Husk Powder on Standard Malaysian Natural Rubber Grade L ( SMR L ) and Epoxidized Natural Rubber ( ENR 50 ) Composites. Polym Plast Technol Eng 51:37–41. https://doi.org/10.1080/03602559.2011.625377

    Article  CAS  Google Scholar 

  21. Xu T, Jia Z, Luo Y, Jia D, Peng Z (2015) Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites. Appl Surf Sci 328:306–313. https://doi.org/10.1016/j.apsusc.2014.12.029

    Article  CAS  Google Scholar 

  22. Ismail H, Rusli A, Rashid AA (2005) Maleated natural rubber as a coupling agent for paper sludge filled natural rubber composites. Polym Test 24:856–862. https://doi.org/10.1016/j.polymertesting.2005.06.011

    Article  CAS  Google Scholar 

  23. Gelling I (1991) Epoxidised natural rubber. Prog Rubber Plast Technol 7:271–297

    CAS  Google Scholar 

  24. Dileep P, Narayanankutty SK (2020) A novel method for preparation of nanosilica from bamboo leaves and its green modi fi cation as a multi-functional additive in styrene butadiene rubber. Mater Today Commun 24:100957. https://doi.org/10.1016/j.mtcomm.2020.100957

    Article  CAS  Google Scholar 

  25. Flory PJ, John Rehner J (1943) Statistical Mechanics of Cross-Linked Polymer Networks I. Rubberlike Elasticity, J. Chem. Phys 11:512–520. https://doi.org/10.1063/1.1723791

    Article  CAS  Google Scholar 

  26. Boonkerd K, Chuayjuljit S, Abdulraman D, Jaranrangsup W (2012) Silica-rich filler for the reinforcement in natural rubber. Rubber Chem Technol 85:1–13. https://doi.org/10.5254/1.3672114

    Article  CAS  Google Scholar 

  27. Ellis B, Welding GN (1964) Estimation, from Swelling, of the Structural Contribution of Chemical Reactions to the Vulcanization of Natural Rubber. Part II. Estimation of Equilibrium Degree of Swelling, Rubber Chem. Technol 37:563–570. https://doi.org/10.5254/1.3540348

    Article  CAS  Google Scholar 

  28. Wang X-H (1996) Interfacial Electrochemistry of Pyrite Oxidation and Flotation. J. Colloid Interface Sci 178:628–637. https://doi.org/10.1006/jcis.1996.0160

    Article  CAS  Google Scholar 

  29. Peng H, Wu D, Abdalla M, Luo W, Jiao W, Bie X (2017) Study of the effect of sodium sulfide as a selective depressor in the separation of chalcopyrite and molybdenite. Minerals 7. https://doi.org/10.3390/min7040051

  30. Shiny P, Rani DPVJ (2010) Use of sodium and potassium butyl xanthate as accelerator for room temperature prevulcanization of natural rubber latex. J. Appl. Polym. Sci 116:2658–2667. https://doi.org/10.1002/app.34057

    Article  CAS  Google Scholar 

  31. Zhou C, Xu S, Pi P, Cheng J, Wang L, Yang J, Wen X (2018) Polyacrylate/silica nanoparticles hybrid emulsion coating with high silica content for high hardness and dry-wear-resistant. Prog Org Coatings 121:30–37. https://doi.org/10.1016/j.porgcoat.2018.04.001

    Article  CAS  Google Scholar 

  32. Zhang C, Tang Z, Guo B, Zhang L (2019) Concurrently improved dispersion and interfacial interaction in rubber/nanosilica composites via efficient hydrosilane functionalization. Compos Sci Technol 169:217–223. https://doi.org/10.1016/j.compscitech.2018.11.016

    Article  CAS  Google Scholar 

  33. Charmas B, Kucio K, Sydorchuk V, Khalameida S, Zięzio M, Nowicka A (2018) Characterization of multimodal Silicas using TG/DTG/DTA, Q-TG, and DSC methods. Colloids and Interfaces 3:6. https://doi.org/10.3390/colloids3010006

    Article  CAS  Google Scholar 

  34. Zhang C, Tang Z, Guo B, Zhang L (2018) Significantly improved rubber-silica interface via subtly controlling surface chemistry of silica. Compos Sci Technol 156:70–77. https://doi.org/10.1016/J.compscitech.2017.12.020

    Article  CAS  Google Scholar 

  35. Ryu C, Kim SJ, Il Kim D, Kaang S, Seo G (2016) The effect of surface area of Silicas on their reinforcing performance to styrene-butadiene rubber compounds. Elastomers Compos 51:128–137. https://doi.org/10.7473/EC.2016.51.2.128

    Article  CAS  Google Scholar 

  36. Mahir N, Ismail H, Othman N (2016) Tensile, swelling and thermal aging properties of mangosteen (garcinia mangostana) peel powder filled natural rubber compounds. J Polym Mater 33:233–243

    CAS  Google Scholar 

  37. Dileep P, Narayanankutty SK (2020) Styrenated phenol modified nanosilica for improved thermo-oxidative and mechanical properties of natural rubber. Polym Test 82:106302. https://doi.org/10.1016/j.polymertesting.2019.106302

    Article  CAS  Google Scholar 

  38. Ahmed K (2015) Hybrid composites prepared from industrial waste: mechanical and swelling behavior. J Adv Res 6:225–232. https://doi.org/10.1016/j.jare.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  39. Luo K, You G, Zhao X, Lu L, Wang W, Wu S (2019) Synergistic effects of antioxidant and silica on enhancing thermo-oxidative resistance of natural rubber: insights from experiments and molecular simulations. Mater Des 181:107944. https://doi.org/10.1016/j.matdes.2019.107944

    Article  CAS  Google Scholar 

  40. Rattanasom N, Saowapark T, Deeprasertkul C (2007) Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Test 26:369–377. https://doi.org/10.1016/j.polymertesting.2006.12.003

    Article  CAS  Google Scholar 

  41. Sattayanurak S, Noordermeer JWM, Sahakaro K, Kaewsakul W, Dierkes WK, Blume A (2019) Silica-reinforced natural rubber: synergistic effects by addition of small amounts of secondary fillers to silica-reinforced natural rubber Tire tread compounds. Adv Mater Sci Eng 2019:1–8. https://doi.org/10.1155/2019/5891051

    Article  CAS  Google Scholar 

  42. Yu P, He H, Jia Y, Shenghui T, Jian C, Jia D, Luo Y (2016) A comprehensive study on lignin as a green alternative of silica in natural rubber composites. Polym Test 54:176–185. https://doi.org/10.1016/j.polymertesting.2016.07.014

    Article  CAS  Google Scholar 

  43. Xing W, Tang M, Wu J, Huang G, Li H, Lei Z, Fu X, Li H (2014) Multifunctional properties of graphene/rubber nanocomposites fabricated by a modified latex compounding method. Compos Sci Technol 99:67–74. https://doi.org/10.1016/j.compscitech.2014.05.011

    Article  CAS  Google Scholar 

  44. Walia M, Goyal S, Kapoor KK, Suneja S, Dev S (2004) Factors that affect the fatigue life of rubber: a literature survey. J Rubber Chem Technol 77:391–412

    Article  Google Scholar 

  45. Yu P, He H, Jia Y, Tian S, Chen J, Jia D, Luo Y (2016) A comprehensive study on lignin as a green alternative of silica in natural rubber composites. Polym Test 54:176–185. https://doi.org/10.1016/j.polymertesting.2016.07.014

    Article  CAS  Google Scholar 

  46. Sulekha PB, Joseph R, Madhusoodanan KN, Thomas KT (2002) New oligomer-bound antioxidants for improved flex crack resistance and ozone resistance. Polym Degrad Stab 77:403–416. https://doi.org/10.1016/S0141-3910(02)00090-3

    Article  CAS  Google Scholar 

  47. Cox WL, Parks CR (1966) Effect of curing systems on fatigue of natural rubber vulcanizates. Am. Chem. Soc.:785–797. https://doi.org/10.5254/1.3544883

  48. J.E. Mark, B. Erman, M. Roland, The Science and Technology of Rubber, 4th ed., Academic Press, 2013. https://books.google.co.in/books?id=otzx0FCPyPcC

  49. Chen Y, Peng Z, Kong LX, Huang MF, Li PW (2008) Natural rubber nanocomposite reinforced with nano silica. Polym Eng Sci 48:1674–1677. https://doi.org/10.1002/pen.20997

    Article  CAS  Google Scholar 

  50. Chandra R (1981) Controlled thermal degradation of natural rubber in dilute solutions in the Presence & Absence of some metal Isopropylxanthates. Indian J Chem 20:1178–1181

    Google Scholar 

  51. Tsekmes A, Kochetov R, Morshuis P, Smit JJ, Iizuka T, Tatsumi K, Tanaka T (2014). How different fillers affect the thermal conductivity of epoxy composites. https://doi.org/10.1109/CEIDP.2014.6995843

  52. Huang C, Qian X, Yang R (2018) Thermal conductivity of polymers and polymer nanocomposites. Mater Sci Eng R Reports 132:1–22. https://doi.org/10.1016/j.mser.2018.06.002

    Article  Google Scholar 

  53. Chari VD, Sharma DVSGK, Prasad PSR, Murthy SR (2013) Dependence of thermal conductivity in micro to nano silica. Bull. Mater. Sci 36:517–520. https://doi.org/10.1007/s12034-013-0519-3

    Article  CAS  Google Scholar 

  54. Yang D, Kong X, Ni Y, Gao D, Yang B, Zhu Y, Zhang L (2019) Novel nitrile-butadiene rubber composites with enhanced thermal conductivity and high dielectric constant. Compos Part A Appl Sci Manuf 124:105447. https://doi.org/10.1016/j.compositesa.2019.05.015

    Article  CAS  Google Scholar 

  55. Lee J-Y, Park N, Lim S, Ahn B, Kim W, Moon H, Paik H, Kim W (2017) Influence of the silanes on the crosslink density and crosslink structure of silica-filled solution styrene butadiene rubber compounds. Compos Interfaces 24:711–727. https://doi.org/10.1080/09276440.2017.1267524

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank J J Murphy Research Centre, Rubber Park India (P) Ltd., Valayanchirangara for rheological characterization and mechanical property analysis and Department of Physics, Cochin University of Science and Technology for FESEM and EDX analysis.

Availability of Data and Material

My research didn’t generate any data or I reused existing data.

Author information

Authors and Affiliations

Authors

Contributions

Dileep P.: Conceptualization, methodology, visualization, investigation and writing. Sinto Jacob: Conceptualization, writing, reviewing and editing. Julie Chandra C.S.: Data curation and resources. Midhun Dominic C.D.: Data curation, writing and reviewing. Poornima M.P.: Data curation, resources and reviewing. John P. Rappai: Writing, reviewing and editing. Sunil K. Narayanankutty.: Supervision, writing, reviewing and editing.

Corresponding author

Correspondence to P. Dileep.

Ethics declarations

This article does not contain any studies involving animals or human participants performed by any of the authors.

Consent to Participate

Not Applicable.

Consent for Publication

Not Applicable.

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

- Sodium isopropyl xanthate (SIPX) is an efficient accelerator for silica modification.

- SIPX- bound nanosilica reduces cure time of natural rubber (NR) compounds.

- SIPX modification leads to improved silica - rubber interaction.

- Thermal aging properties of NR composites are improved by SIPX-NS addition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dileep, P., Jacob, S., Chandra, C.S.J. et al. Functionalized Nanosilica for Vulcanization Efficiency and Mechanical Properties of Natural Rubber Composites. Silicon 14, 4411–4422 (2022). https://doi.org/10.1007/s12633-021-01281-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01281-3

Keywords

Navigation