Skip to main content
Log in

Current Transport, Photosensitive, and Dielectric Properties of PVA/n-Si Heterojunction Photodiode

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The results showed that the annealing of polyvinyl alcohol (PVA) at 450 K has improved its electrical conductivity. Scientists had previously overlooked its great characteristics because of its insulating properties however, PVA showed a considerable increase in conductivity, making it a promising material for optoelectronic devices. The electrical and dielectric properties of PVA/n-Si heterostructure were investigated. The ideality factor, barrier height, and series resistance were measured at different temperatures using various approaches as Nord, Chueng, and the conventional method. A detailed analysis of Ac conductivity, real and imaginary parts of the impedance (Z’, Z“) were examined at different temperatures, voltages, and frequencies. The results showed that the value of the imaginary part of the impedance Z” changes with temperature, voltage, and frequency; however, the novelty here is that Z” only takes positive values if the frequency is set to a very low value, such as 10 Hz. The photocurrent properties were also studied confirming that PVA/n-Si structure is responsive to daylight illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable.

References

  1. Bilkan Ç, Azizian-Kalandaragh Y, Altındal Ş, Shokrani-Havigh R (2016) Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structures. Phys B Condens Matter 500:154–160. https://doi.org/10.1016/j.physb.2016.08.001

    Article  CAS  Google Scholar 

  2. Baraz N, Yücedağ İ, Azizian-Kalandaragh Y, Ersöz G, Orak İ, Altındal Ş, Akbari B, Akbari H (2017) Electric and dielectric properties of au/ZnS-PVA/n-Si (MPS) structures in the frequency range of 10–200 kHz. J Electron Mater 46:4276–4286. https://doi.org/10.1007/s11664-017-5363-6

    Article  CAS  Google Scholar 

  3. Bilkan Ç, Altındal Ş, Azizian-Kalandaragh Y (2017) Investigation of frequency and voltage dependence surface states and series resistance profiles using admittance measurements in Al/p-Si with Co3O4-PVA interlayer structures. Phys B Condens Matter 515:28–33. https://doi.org/10.1016/j.physb.2017.04.002

    Article  CAS  Google Scholar 

  4. Bilkan Ç, Badali Y, Fotouhi-Shablou S, Azizian-Kalandaragh Y, Altındal Ş (2017) On the temperature dependent current transport mechanisms and barrier inhomogeneity in au/SnO2–PVA/n-Si Schottky barrier diodes. Appl Phys A Mater Sci Process 123:560. https://doi.org/10.1007/s00339-017-1168-y

    Article  CAS  Google Scholar 

  5. Ashery A, Gad S, Shaban H, Gaballah AEH (2021) Heterostructure device based on Graphene oxide/TiO2/n-Si for optoelectronic applications. ECS J Solid State Sci Technol 10:021002. https://doi.org/10.1149/2162-8777/abe1d9

    Article  CAS  Google Scholar 

  6. Siva Pratap Reddy M, Sreenu K, Rajagopal Reddy V, Park C (2017) Modified electrical properties and transport mechanism of Ti/p-InP Schottky structure with a polyvinylpyrrolidone (PVP) polymer interlayer. J Mater Sci Mater Electron 28:4847–4855. https://doi.org/10.1007/s10854-016-6131-8

    Article  CAS  Google Scholar 

  7. Badran RI, Umar A, Al-Heniti S et al (2010) Synthesis and characterization of zinc oxide nanorods on silicon for the fabrication of p-Si/n-ZnO heterojunction diode. J Alloys Compd 508:375–379. https://doi.org/10.1016/j.jallcom.2010.08.048

    Article  CAS  Google Scholar 

  8. Azizian-Kalandaragh Y, Khodayari A, Behboudnia M (2009) Ultrasound-assisted synthesis of ZnO semiconductor nanostructures. Mater Sci Semicond Process 12:142–145. https://doi.org/10.1016/j.mssp.2009.09.006

    Article  CAS  Google Scholar 

  9. Mansour AF, Mansour SF, Abdo MA (2015) Improvement Structural and Optical Properties of ZnO / PVA Nanocomposites 7:60–69. https://doi.org/10.9790/4861-07226069

  10. Samzadeh-Kermani A, Mirzaee M, Ghaffari-Moghaddam M (2016) Polyvinyl alcohol/Polyaniline/ZnO Nanocomposite: synthesis, characterization and bactericidal property. Adv Biol Chem 06:1–11. https://doi.org/10.4236/abc.2016.61001

    Article  Google Scholar 

  11. Hu G, Zhou R, Yu R, Dong L, Pan C, Wang ZL (2014) Piezotronic effect enhanced Schottky-contact ZnO micro/nanowire humidity sensors. Nano Res 7:1083–1091. https://doi.org/10.1007/s12274-014-0471-6

    Article  CAS  Google Scholar 

  12. Bacaksiz E, Aksu S, Çankaya G, Yılmaz S, Polat İ, Küçükömeroğlu T, Varilci A (2011) Fabrication of p-type CuSCN/n-type micro-structured ZnO heterojunction structures. Thin Solid Films 519:3679–3685. https://doi.org/10.1016/j.tsf.2011.01.254

    Article  CAS  Google Scholar 

  13. Vijaya Kumar G, Chandramani R (2010) Doping and irradiation dependence of electrical conductivity of Fe 3+and Ni2+ doped polyvinyl alcohol films. Acta Phys Pol A 117:917–920. https://doi.org/10.12693/APhysPolA.117.917

    Article  Google Scholar 

  14. Rebaoui Z, Bachir Bouiajra W, Abboun Abid M, Saidane A, Jammel D, Henini M, Felix JF (2017) SiC polytypes and doping nature effects on electrical properties of ZnO-SiC Schottky diodes. Microelectron Eng 171:11–19. https://doi.org/10.1016/j.mee.2017.01.010

    Article  CAS  Google Scholar 

  15. Ali GM, Chakrabarti P (2013) Fabrication and characterization of nanostructure thin film ZnO Schottky contacts based UV photodetectors. In: Proc.SPIE

  16. Thuy Doan M, Vinh Ho X, Nguyen T, Nguyen VN (2014) Influence of doping co to characterization of ZnO nanostructures. Adv Nat Sci Nanosci Nanotechnol 5:25011. https://doi.org/10.1088/2043-6262/5/2/025011

    Article  CAS  Google Scholar 

  17. Orak I, Kocyigit A, Alindal Ş (2017) Electrical and dielectric characterization of au/ZnO/n–Si device depending frequency and voltage. Chin Phys B 26:28102. https://doi.org/10.1088/1674-1056/26/2/028102

    Article  CAS  Google Scholar 

  18. Opel M, Geprägs S, Althammer M, Brenninger T, Gross R (2013) Laser molecular beam epitaxy of ZnO thin films and heterostructures. J Phys D Appl Phys 47:34002. https://doi.org/10.1088/0022-3727/47/3/034002

    Article  CAS  Google Scholar 

  19. Altındal Ş, Karadeniz S, Tuğluoğlu N, Tataroğlu A (2003) The role of interface states and series resistance on the I–V and C–V characteristics in Al/SnO2/p-Si Schottky diodes. Solid State Electron 47:1847–1854. https://doi.org/10.1016/S0038-1101(03)00182-5

    Article  CAS  Google Scholar 

  20. Nikravan A, Badali Y, Altındal Ş, Uslu İ, Orak İ (2017) On the frequency and voltage-dependent profiles of the surface states and series resistance of au/ZnO/n-Si structures in a wide range of frequency and voltage. J Electron Mater 46:5728–5736. https://doi.org/10.1007/s11664-017-5613-7

    Article  CAS  Google Scholar 

  21. Baraz N, Yücedağ İ, Azizian-Kalandaragh Y, Altındal Ş (2017) Determining electrical and dielectric parameters of dependence as function of frequencies in Al/ZnS-PVA/p-Si (MPS) structures. J Mater Sci Mater Electron 28:1315–1321. https://doi.org/10.1007/s10854-016-5662-3

    Article  CAS  Google Scholar 

  22. Demirezen S (2013) Frequency- and voltage-dependent dielectric properties and electrical conductivity of au/PVA (bi-doped)/n-Si Schottky barrier diodes at room temperature. Appl Phys A Mater Sci Process 112:827–833. https://doi.org/10.1007/s00339-013-7605-7

    Article  CAS  Google Scholar 

  23. Aydın ME, Türüt A (2007) The electrical characteristics of Sn/methyl-red/p-type Si/Al contacts. Microelectron Eng 84:2875–2882. https://doi.org/10.1016/j.mee.2007.02.010

    Article  CAS  Google Scholar 

  24. Lapa HE, Kökce A, Özdemir AF, Altındal Ş Investigation of Dielectric Properties, Electric Modulus and Conductivity of the Au/Zn-Doped PVA/n-4H-SiC (MPS) Structure Using Impedance Spectroscopy Method. Z Phys Chem 234:505–516. https://doi.org/10.1515/zpch-2017-1091

  25. Cowley AM, Sze SM (1965) Surface states and barrier height of metal-semiconductor systems. J Appl Phys 36:3212–3220. https://doi.org/10.1063/1.1702952

    Article  CAS  Google Scholar 

  26. Altındal Ş, Kanbur H, Yıldız DE, Parlak M (2007) Current conduction mechanism in Al/p-Si Schottky barrier diodes with native insulator layer at low temperatures. Appl Surf Sci 253:5056–5061. https://doi.org/10.1016/j.apsusc.2006.11.015

    Article  CAS  Google Scholar 

  27. Kang WP, Davidson JL, Gurbuz Y, Kerns DV (1995) Temperature dependence and effect of series resistance on the electrical characteristics of a polycrystalline diamond metal-insulator- semiconductor diode. J Appl Phys 78:1101–1107. https://doi.org/10.1063/1.360343

    Article  CAS  Google Scholar 

  28. Ashery A, Elnasharty MMM, Hameed TA (2020) Investigation of electrical and dielectric properties of epitaxially grown au/n-GaAs/p-Si/Al heterojunction. Opt Quant Electron 52:490. https://doi.org/10.1007/s11082-020-02601-4

    Article  CAS  Google Scholar 

  29. Ashery A, Farag AAM, Moussa MA, Turky GM (2021) Electrical performance of nanocrystalline graphene oxide/SiO2-based hybrid heterojunction device. Mater Sci Semicond Process 121:105415. https://doi.org/10.1016/j.mssp.2020.105415

    Article  CAS  Google Scholar 

  30. Pakma O, Serin N, Serin T, Altındal Ş (2008) The double Gaussian distribution of barrier heights in Al/TiO2/p-Si (metal-insulator-semiconductor) structures at low temperatures. J Appl Phys 104:14501. https://doi.org/10.1063/1.2952028

    Article  CAS  Google Scholar 

  31. Mahani R, Ashery A, Elnasharty MMM (2019) Frequency and voltage dependence of the dielectric properties of Ni/SiO2/P-Si (MOS) structure. Silicon 12:1879–1885. https://doi.org/10.1007/s12633-019-00277-4

    Article  CAS  Google Scholar 

  32. Cheung SK, Cheung NW (1986) Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl Phys Lett 49:85–87. https://doi.org/10.1063/1.97359

    Article  CAS  Google Scholar 

  33. Ashery A, Elnasharty MMM, Khalil AAI, Azab AA (2020) Negative resistance, capacitance in Mn/SiO2/p-Si MOS structure. Mater Res Express 7:85901. https://doi.org/10.1088/2053-1591/aba818

    Article  CAS  Google Scholar 

  34. Buyukbas-Ulusan A, Tataroglu A (2020) Electrical characterization of silicon nitride interlayer-based MIS diode. J Mater Sci Mater Electron 31:9888–9893. https://doi.org/10.1007/s10854-020-03533-1

    Article  CAS  Google Scholar 

  35. Norde H (1979) A modified forward I-V plot for Schottky diodes with high series resistance. J Appl Phys 50:5052–5053. https://doi.org/10.1063/1.325607

    Article  CAS  Google Scholar 

  36. Tatarǒlu A, Hendi AA, Alorainy RH, Yakuphanǒlu F (2014) A new aluminum iron oxide Schottky photodiode designed via sol—gel coating method. Chinese Phys B 23:57504. https://doi.org/10.1088/1674-1056/23/5/057504

    Article  CAS  Google Scholar 

  37. Chaudhry MA, Jonscher AK (1988) High-temperature dielectric properties of ruby mica perpendicular to the cleavage planes. J Mater Sci 23:208–216. https://doi.org/10.1007/BF01174055

    Article  CAS  Google Scholar 

  38. Fleig J, Maier J (2004) The polarization of mixed conducting SOFC cathodes: effects of surface reaction coefficient, ionic conductivity and geometry. J Eur Ceram Soc 24:1343–1347. https://doi.org/10.1016/S0955-2219(03)00561-2

    Article  CAS  Google Scholar 

  39. Smari M, Rahmouni H, Elghoul N, Walha I, Dhahri E, Khirouni K (2015) Electric–dielectric properties and complex impedance analysis of La0.5Ca0.5−xAgxMnO3 manganites. RSC Adv 5:2177–2184. https://doi.org/10.1039/C4RA11323C

    Article  CAS  Google Scholar 

  40. Suman CK, Prasad K, Choudhary RNP (2006) Complex impedance studies on tungsten-bronze electroceramic: Pb2Bi3LaTi5O18. J Mater Sci 41:369–375. https://doi.org/10.1007/s10853-005-2620-5

    Article  CAS  Google Scholar 

  41. Prasad K, Kumar A, Choudhary SN, Choudhary RNP (2005) Relaxor behaviour of Pb[(Mg3/4Co1/4)1/3Nb2/3]O3 ceramic. Solid State Ionics 176:1641–1646. https://doi.org/10.1016/j.ssi.2005.04.004

    Article  CAS  Google Scholar 

  42. Büyükbaş-Uluşan A, Tataroğlu A (2020) Impedance spectroscopy of au/TiO2/n-Si metal-insulator-semiconductor (MIS) capacitor. Phys B Condens Matter 580:411945. https://doi.org/10.1016/j.physb.2019.411945

    Article  CAS  Google Scholar 

  43. Rao KS, Murali Krishna P, Madhava Prasad D, Lee JH, Kim JS (2008) Electrical, electromechanical and structural studies of lead potassium samarium niobate ceramics. J Alloys Compd 464:497–507. https://doi.org/10.1016/j.jallcom.2007.10.023

    Article  CAS  Google Scholar 

  44. Ashery A, Farag AAM, Moussa MA, Turky GM (2020) Enhancement of electrical and dielectrically performance of graphene-based promise electronic devices. Synth Met 261:116303. https://doi.org/10.1016/j.synthmet.2020.116303

    Article  CAS  Google Scholar 

  45. Ashery A, Elnasharty MMM, El Radaf IM (2020) Current transport and dielectric analysis of Ni/SiO2/P-Si diode prepared by liquid phase Epitaxy. Silicon. https://doi.org/10.1007/s12633-020-00808-4

  46. Ashery A, Shaban H, Gad SA, Mansour BA (2020) Investigation of electrical and capacitance- voltage characteristics of GO/TiO2/n-Si MOS device. Mater Sci Semicond Process 114:105070. https://doi.org/10.1016/j.mssp.2020.105070

    Article  CAS  Google Scholar 

  47. Ashery A, Gad SA, Shaban H (2020) Frequency and temperature dependence of dielectric properties and capacitance–voltage in GO/TiO2/n-Si MOS device. Appl Phys A Mater Sci Process 126:547. https://doi.org/10.1007/s00339-020-03729-6

    Article  CAS  Google Scholar 

  48. Ashery A, Moussa MA, Turky GM (2021) Enhancement of electrical and dielectric properties of Graphene oxide-nanoparticle based devices. Silicon. https://doi.org/10.1007/s12633-021-00943-6

Download references

Acknowledgments

This work was supported by Ministry of Higher education and scientific research of Egypt.

Funding

The authors received no financial support for the research, authorship, and publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the work.

Corresponding author

Correspondence to A. E. H. Gaballah.

Ethics declarations

applicable.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

agree.

Conflict of Interest

The authors declare no conflicts of interest associated with this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashery, A., Gaballah, A.E.H. & Turky, G.M. Current Transport, Photosensitive, and Dielectric Properties of PVA/n-Si Heterojunction Photodiode. Silicon 14, 4633–4646 (2022). https://doi.org/10.1007/s12633-021-01260-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01260-8

Keywords

Navigation