Skip to main content
Log in

Separation of Si and SiC from Photovoltaic Industry Waste. Recycling of SiC in Production of Cu2O-SiC Powder

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Silicon ingot cutting process generates slurry waste which mainly contains lubricant oil, silicon and silicon carbide particles. In this study, slurry waste was the subject of a primary decantation which served to obtain two different effluents namely dark sludge (DS) and dark liquid (DL). Deoiling treatment of DS and DL using acetone was carried out. The resulting powders were first leached by nitric acid to remove heavy metals and then washed by distilled water to separate Si and SiC. Scanning electron microscopy (SEM) coupled to energy dispersive x-ray spectrometry (EDXS) and x-ray diffraction (XRD) show a successful separation of Si and SiC particles. As reuse of SiC-rich powder, a Cu2O-SiC composite was synthesized by electroless plating process under experimental controlled parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dong A, Zhang L, Damoah LNW (2011) Beneficial and technological analysis for the recycling of solar grade silicon wastes. JOM 63:23–27. https://doi.org/10.1007/s11837-011-0006-5

    Article  CAS  Google Scholar 

  2. Goetzberger A, Hebling C (2000) Photovoltaic materials, past, present, future. Sol Energy Mater 19

  3. Wang TY, Lin YC, Tai CY et al (2008) A novel approach for recycling of kerf loss silicon from cutting slurry waste for solar cell applications. J Cryst Growth 310:3403–3406. https://doi.org/10.1016/j.jcrysgro.2008.04.031

    Article  CAS  Google Scholar 

  4. Hachichi K, Lami A, Zemmouri H, Cuellar P, Soni R, Ait-Amar H, Drouiche N (2018) Silicon recovery from kerf slurry waste: a review of current status and perspective. Silicon 10:1579–1589. https://doi.org/10.1007/s12633-017-9642-x

    Article  CAS  Google Scholar 

  5. Lin Y-C, Wang T-Y, Lan C-W, Tai CY (2010) Recovery of silicon powder from kerf loss slurry by centrifugation. Powder Technol 200:216–223. https://doi.org/10.1016/j.powtec.2010.02.028

    Article  CAS  Google Scholar 

  6. Hecini M, Drouiche N, Bouchelaghem O (2016) Recovery of cutting fluids used in polycrystalline silicon ingot slicing. J Cryst Growth 453:143–150. https://doi.org/10.1016/j.jcrysgro.2016.08.035

    Article  CAS  Google Scholar 

  7. Drouiche N, Naceur MW, Boutoumi H et al (2013) Assessment of the recovery of photovoltaic cells cutting fluid by chemical pretreatment and ultrafiltration. Desalination Water Treat 51:713–716. https://doi.org/10.1080/19443994.2012.694215

    Article  CAS  Google Scholar 

  8. Wang TY, Lin YC, Tai CY et al (2009) Recovery of silicon from kerf loss slurry waste for photovoltaic applications. Prog Photovolt Res Appl 17:155–163. https://doi.org/10.1002/pip.863

    Article  CAS  Google Scholar 

  9. Tomono K, Miyamoto S, Ogawa T et al (2013) Recycling of kerf loss silicon derived from diamond-wire saw cutting process by chemical approach. Sep Purif Technol 120:304–309. https://doi.org/10.1016/j.seppur.2013.10.014

    Article  CAS  Google Scholar 

  10. Xing P, Guo J, Zhuang Y, Li F, Tu GF (2013) Rapid recovery of polycrystalline silicon from kerf loss slurry using double-layer organic solvent sedimentation method. Int J Miner Metall Mater 20:947–952. https://doi.org/10.1007/s12613-013-0819-z

    Article  CAS  Google Scholar 

  11. Zhang Y, Hu Y, Zeng H, Zhong L, Liu K, Cao H, Li W, Yan H (2017) Silicon carbide recovered from photovoltaic industry waste as photocatalysts for hydrogen production. J Hazard Mater 329:22–29. https://doi.org/10.1016/j.jhazmat.2017.01.023

    Article  CAS  PubMed  Google Scholar 

  12. Sergiienko SA, Pogorelov BV, Daniliuk VB (2014) Silicon and silicon carbide powders recycling technology from wire-saw cutting waste in slicing process of silicon ingots. Sep Purif Technol 133:16–21. https://doi.org/10.1016/j.seppur.2014.06.036

    Article  CAS  Google Scholar 

  13. Shih C-Y, Gau S-H, Kuo C-C, et al (2016) The Study of Rotational Ultrafiltration System for Recovery of Spent Cutting Oil from Solar Photovoltaic Cell Manufacturing Process 8

  14. Xiao YP, Yang YX (2011) Potential routes for recycling and reuse of silicon kerf. Adv Mater Res 295–297:2235–2240. https://doi.org/10.4028/www.scientific.net/AMR.295-297.2235

    Article  CAS  Google Scholar 

  15. Liu S, Huang K, Zhu H (2016) Removal of Fe, B and P impurities by enhanced separation technique from silicon-rich powder of the multi-wire sawing slurry. Chem Eng J 299:276–281. https://doi.org/10.1016/j.cej.2016.04.081

    Article  CAS  Google Scholar 

  16. Liu S, Huang K, Zhu H (2017) Source of boron and phosphorus impurities in the silicon wiresawing slurry and their removal by acid leaching. Sep Purif Technol 172:113–118. https://doi.org/10.1016/j.seppur.2016.07.048

    Article  CAS  Google Scholar 

  17. Jin X, Kong J, Zhou X, et al (2019) Recycling of silicon kerf loss derived from diamond-wire saw cutting process to prepare silicon nitride J Clean Prod 119163. https://doi.org/10.1016/j.jclepro.2019.119163

  18. Bojarevics V, Djambazov G, Pericleous K (2017) Particle separation in silicon ingot casting using AC magnetic field. In: Zhang L, Drelich JW, Neelameggham NR et al (eds) Energy technology 2017. Springer International Publishing, Cham, pp 403–410

    Chapter  Google Scholar 

  19. Jiang D, Qin S, Li P et al (2017) Electromagnetic separation of silicon carbide inclusions with aluminum penetration in silicon by imposition of supersonic frequency magnetic field. J Clean Prod 145:45–49. https://doi.org/10.1016/j.jclepro.2017.01.041

    Article  CAS  Google Scholar 

  20. Dong A, Damoah LNW, Zhang L, Zhu H (2010) Purification of solar grade silicon using electromagnetic field. In: 2010 35th IEEE photovoltaic specialists conference. IEEE, Honolulu, HI, USA, pp 002266–002269

  21. Li X, Wu J, Xu M, Ma W (2019) Separation and purification of silicon from cutting kerf-loss slurry waste by electromagnetic and slag treatment technology. J Clean Prod 211:695–703. https://doi.org/10.1016/j.jclepro.2018.11.195

    Article  CAS  Google Scholar 

  22. Vazquez-Pufleau M, Chadha TS, Yablonsky G et al (2015) Elimination of carbon contamination from silicon kerf using a furnace aerosol reactor methodology. Ind Eng Chem Res 54:5914–5920. https://doi.org/10.1021/acs.iecr.5b00577

    Article  CAS  Google Scholar 

  23. Huang T-Y, Selvaraj B, Lin H-Y et al (2016) Exploring an interesting Si source from photovoltaic industry waste and engineering it as a Li-ion battery high-capacity anode. ACS Sustain Chem Eng 4:5769–5775. https://doi.org/10.1021/acssuschemeng.6b01749

    Article  CAS  Google Scholar 

  24. Lee B, Liu T, Kim SK et al (2017) Submicron silicon encapsulated with graphene and carbon as a scalable anode for lithium-ion batteries. Carbon 119:438–445. https://doi.org/10.1016/j.carbon.2017.04.065

    Article  CAS  Google Scholar 

  25. Xiang K, Wang X, Chen M et al (2017) Industrial waste silica preparation of silicon carbide composites and their applications in lithium-ion battery anode. J Alloys Compd 695:100–105. https://doi.org/10.1016/j.jallcom.2016.10.165

    Article  CAS  Google Scholar 

  26. Tan H-G, Duh J-G (2016) Processing silicon microparticles recycled from wafer waste via rapid thermal process for lithium-ion battery anode materials. J Power Sources 335:146–154. https://doi.org/10.1016/j.jpowsour.2016.10.034

    Article  CAS  Google Scholar 

  27. Lu B, Ma B, Yu R et al (2017) Photovoltaic Monocrystalline silicon waste-derived hierarchical silicon/flake graphite/carbon composite as low-cost and high-capacity anode for lithium-ion batteries. ChemistrySelect 2:3479–3489. https://doi.org/10.1002/slct.201700607

    Article  CAS  Google Scholar 

  28. Wagner NP, Tron A, Tolchard JR et al (2019) Silicon anodes for lithium-ion batteries produced from recovered kerf powders. J Power Sources 414:486–494. https://doi.org/10.1016/j.jpowsour.2019.01.035

    Article  CAS  Google Scholar 

  29. Bains PS, Sidhu SS, Payal HS (2018) Magnetic field assisted EDM: new horizons for improved surface properties. Silicon 10:1275–1282. https://doi.org/10.1007/s12633-017-9600-7

    Article  CAS  Google Scholar 

  30. Li H, Lei Y, Huang Y et al (2011) Photocatalytic reduction of carbon dioxide to methanol by Cu2O/SiC nanocrystallite under visible light irradiation. J Nat Gas Chem 20:145–150. https://doi.org/10.1016/S1003-9953(10)60166-1

    Article  CAS  Google Scholar 

  31. Wang Y, Guo X, Lü M et al (2017) Cu 2 O/SiC as efficient catalyst for Ullmann coupling of phenols with aryl halides. Chin J Catal 38:658–664. https://doi.org/10.1016/S1872-2067(17)62785-2

    Article  CAS  Google Scholar 

  32. Chen W, Gao W, He Y (2010) A novel electroless plating of Ni–P–TiO2 nano-composite coatings. Surf Coat Technol 204:2493–2498. https://doi.org/10.1016/j.surfcoat.2010.01.032

    Article  CAS  Google Scholar 

  33. Faraji S, Abdul Rahim A, Mohamed N, Sipaut CS (2011) A study of electroless copper–phosphorus coatings with the addition of silicon carbide (SiC) and graphite (cg) particles. Surf Coat Technol 206:1259–1268. https://doi.org/10.1016/j.surfcoat.2011.08.032

    Article  CAS  Google Scholar 

  34. Luo L-M, Lu Z-L, Tan X-Y et al (2013) A specific chemical activation pretreatment for electroless nickel plating on SiC ceramic powders. Powder Technol 249:431–435. https://doi.org/10.1016/j.powtec.2013.08.039

    Article  CAS  Google Scholar 

  35. Ge XL, Zeng B, Chen ZC et al (2010) A study on the Ni-P-SiC coating of AZ91D magnesium alloy. Appl Mech Mater 43:510–513. https://doi.org/10.4028/www.scientific.net/AMM.43.510

    Article  CAS  Google Scholar 

  36. Faraji S, Faraji AH, Noori SR (2014) An investigation on electroless Cu–P composite coatings with micro and nano-SiC particles. Mater Des 1980-2015 54:570–575. https://doi.org/10.1016/j.matdes.2013.08.092

  37. Pázmán J, Mádai V, Gácsi Z, Kovács Á (2012) Arrangement of the Al-Ni phases in Al/SiC(Ni)p composites. 15

  38. Sezen G, Kilicarslan A, Daglılar S, Kerti I (2016) Autocatalytic Ni-P and Ni-B deposition on SiC powders. Emerg Mater Res 5:147–152. https://doi.org/10.1680/jemmr.15.00034

    Article  Google Scholar 

  39. Moustafa SF, Abdel-Hamid Z, Abd-Elhay AM (2002) Copper matrix SiC and Al2O3 particulate composites by powder metallurgy technique. Mater Lett 53:244–249. https://doi.org/10.1016/S0167-577X(01)00485-2

    Article  CAS  Google Scholar 

  40. Jiang C, Cao Y, Xiao G et al (2017) A review on the application of inorganic nanoparticles in chemical surface coatings on metallic substrates. RSC Adv 7:7531–7539. https://doi.org/10.1039/C6RA25841G

    Article  CAS  Google Scholar 

  41. Li JZ, Tian YW, Li Y, Wang XR (2010) Process of Ni-P Electroless deposition on SiCp/Al composites from acid Bath. Adv Mater Res 160–162:314–318. https://doi.org/10.4028/www.scientific.net/AMR.160-162.314

    Article  CAS  Google Scholar 

  42. Loto CA (2016) Electroless nickel plating – a review. Silicon 8:177–186. https://doi.org/10.1007/s12633-015-9367-7

    Article  CAS  Google Scholar 

  43. Abioye AM, Faraji S, Ani FN (2017) Effect of Heat Treatment on the Characteristics of Electroless Activated Carbon-Nickel Oxide Nanocomposites J Teknol 7

  44. Jiang SX, Guo RH (2011) Electromagnetic shielding and corrosion resistance of electroless Ni–P/cu–Ni multilayer plated polyester fabric. Surf Coat Technol 205:4274–4279. https://doi.org/10.1016/j.surfcoat.2011.03.033

    Article  CAS  Google Scholar 

  45. Faraji S, Rahim AA, Mohamed N, Sipaut CS (2011) Electroless copper-phosphorus coatings with the addition of silicon carbide (SiC) particles. Int J Miner Metall Mater 18:615–622. https://doi.org/10.1007/s12613-011-0486-x

    Article  CAS  Google Scholar 

  46. Xiao FX, Shen XN, Xie JP et al (2011) Electroless deposition of nickel on the surface of silicon carbide crucible from alkaline Bath. Adv Mater Res 399–401:2049–2054. https://doi.org/10.4028/www.scientific.net/AMR.399-401.2049

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge gratefully “CENTRE DE RECHERCHE EN TECHNOLOGIE DES SEMI-CONDUCTEURS POUR L’ENERGÉTIQUE” (CRTSE, Algeria) for providing us with slurry waste. This work is done within the framework of the Franco-Algerian scholarship PROFAS B +.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hachichi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hachichi, K., Zemmouri, H., Tara, A. et al. Separation of Si and SiC from Photovoltaic Industry Waste. Recycling of SiC in Production of Cu2O-SiC Powder. Silicon 13, 361–374 (2021). https://doi.org/10.1007/s12633-020-00442-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00442-0

Keywords

Navigation