Skip to main content
Log in

Simple and High-Effective Purification of Metallurgical-Grade Silicon Through Cu-Catalyzed Chemical Leaching

  • Solution Purification Technology
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A simple and effective method for the removal of impurities from large-sized particle metallurgical-grade silicon (MG-Si) powders based on Cu-catalyzed chemical leaching (CuCCL) has been proposed and discussed. The leaching behaviors of the main metallic impurities (Fe, Al, Ca, Ti, Ni, V and Cu) were investigated using various leaching approaches. The typical precipitates at Si grain boundaries before and after leaching were observed and analyzed by scanning electron microscopy and energy dispersive x-ray spectroscopy. The leaching results show that the order of impurity removal efficiency, from highest to lowest, is CuCCL > HF-H2O2 leaching > HF leaching. After CuCCL, the total metal impurity concentration can be reduced from 6759 ppmw to 193.41 ppmw. The numerous micro-scale “channels” introduced by CuCCL are beneficial for the removal of impurities, especially for the non-dissolving metal impurities, such as calcium and aluminum. The results indicated that CuCCL is promising as an industrial purification method to produce solar-grade silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.R.J. Davis, A. Rohatgi, R.H. Hopkins, and P.D. Blais, IEEE T. Electron. Dev. 27, 677 (1980).

    Article  Google Scholar 

  2. N. Yuge, M. Abe, K. Hanazawa, H. Baba, N. Nakamura, Y. Kato, Y. Sakaguchi, S. Hiwasa, and F. Aratani, Prog. Photovolt. 9, 203 (2001).

    Article  Google Scholar 

  3. A. Goetzberger and C. Hebling, Sol. Energy Mater. Sol. C. 62, 1 (2000).

    Article  Google Scholar 

  4. H. Ni, S. Lu, and C. Chen, J. Cryst. Growth 404, 89 (2014).

    Article  Google Scholar 

  5. W.O. Filtvedt, M. Javidi, A. Holt, M.C. Melaaen, E. Marstein, H. Tathgar, and P.A. Ramachandran, Sol. Energy Mater. Sol. C. 94, 1980 (2010).

    Article  Google Scholar 

  6. M.P. Tejero-Ezpeleta, S. Buchholz, and L. Mleczko, Can. J. Chem. Eng. 82, 520 (2008).

    Article  Google Scholar 

  7. Z. Xia, J. Wu, W. Ma, Y. Lei, K. Wei, and Y. Dai, Sep. Purif. Technol. 187, 25 (2017).

    Article  Google Scholar 

  8. K. Morita and T. Yoshikawa, Trans. Nonferrous Met. Soc. China 21, 685 (2011).

    Article  Google Scholar 

  9. Z. Ding, W. Ma, K. Wei, J. Wu, B. Yang, and Y. Dai, Chin. J. Vaccum Sci. Technol. B 33, 185 (2013).

    Google Scholar 

  10. Z. Ding, W. Ma, K. Wei, J. Wu, K. Xie, and Y. Zhou, J. Iron. Steel Res. Int. 358, 762 (2012).

    Google Scholar 

  11. Z. Ding, W. Ma, K. Wei, J. Wu, Y. Zhou, and, K. Xie, J. Non-cryst. Solids 358, 2708 (2012).

    Google Scholar 

  12. Y. Tan, X.L. Guo, S. Shi, W. Dong, D.C. Jiang, and L.I. Jia-Yan, J. Mater. Eng. 3, 90 (2013).

    Google Scholar 

  13. Y. Tan, S. Ren, S. Shi, S. Wen, D. Jiang, W. Dong, M. Ji, and S. Sun, Vacuum 99, 272 (2014).

    Article  Google Scholar 

  14. X.D. Ma, J. Zhang, T. Wang, and T. Li, Rare Met. 28, 221 (2009).

    Article  Google Scholar 

  15. H. Zhang, Z. Wang, W. Ma, K. Xie, and L. Hu, Ind. Eng. Chem. Res. 52, 7289 (2013).

    Article  Google Scholar 

  16. L.P. Hunt, V.D. Dosaj, J.R. McCormick, and L.D. Crossman, Purification of metallurgical-grade silicon to solar-grade quality, in International Symposium on Solar Energy, (Washington, DC, 1976), p. 200–215.

  17. S.K. Sahu and E. Asselin, Hydrometallurgy 121, 120 (2012).

    Article  Google Scholar 

  18. L. Zong, B. Zhu, Z. Lu, Y. Tan, Y. Jin, N. Liu, Y. Hu, S. Gu, and J. Zhu, Proc. Natl. Acad. Sci. USA 112, 13473 (2015).

    Article  Google Scholar 

  19. M.A. Martorano, J.B.F. Neto, T.S. Oliveira, and T.O. Tsubaki, Mater. Sci. Eng., B 176, 217 (2011).

    Article  Google Scholar 

  20. C. Milanese, V. Buscaglia, F. Maglia, and U. Anselmi-Tamburini, Acta Mater. 50, 1393 (2002).

    Article  Google Scholar 

  21. T. Sadoh and H. Nakashima, Appl. Phys. Lett. 58, 1653 (1991).

    Article  Google Scholar 

  22. Y.H. Sun, Q.H. Ye, C.J. Guo, H.Y. Chen, X. Lang, F. David, Q.H. Luo, and C.M. Yang, Hydrometallurgy 139, 64 (2013).

    Article  Google Scholar 

  23. S. Li, W. Ma, Y. Zhou, X. Chen, Y. Xiao, M. Ma, W. Zhu, and F. Wei, Nanoscale Res. Lett. 9, 196 (2014).

    Article  Google Scholar 

  24. T. Unagami, J. Electrochem. Soc. 127, 476 (1980).

    Article  Google Scholar 

  25. Z. Huang, N. Geyer, P. Werner, B.J. De, and U. Gösele, Adv. Mater. 23, 285 (2011).

    Article  Google Scholar 

  26. X. Li and P.W. Bohn, Appl. Phys. Lett. 77, 2572 (2000).

    Article  Google Scholar 

  27. B. Guan, Y. Sun, X. Li, J. Wang, S. Chen, S. Schweizer, Y. Wong, and R.B. Wehrspohn, Acs Sustain. Chem. Eng. 4, 6590 (2016).

    Article  Google Scholar 

  28. Y. Lei, W. Ma, G. Lv, K. Wei, S. Li, and K. Morita, Sep. Purif. Technol. 173, 363 (2017).

    Article  Google Scholar 

  29. Z.L. Yu, W. Ma, Y. Dai, K. Wei, B. Yang, D. Liu, W. Dai, and J. Wang, Trans. Nonferrous Met. Soc. China 17, 1030 (2007).

    Google Scholar 

  30. H. Lai, L. Huang, C. Gan, P. Xing, J. Li, and X. Luo, Hydrometallurgy 164, 103 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support of this work came from the National Natural Science Foundation of China (Grant Nos. 51504117, 61764009), Yunnan Youth Fund Project (2016FD037) and Talent Development Program of KUST(KKSY201563032), and the Program for Innovative Research Team in University of Ministry of Education of China (No. IRT_17R48).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoyuan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, F., Li, S., Ma, W. et al. Simple and High-Effective Purification of Metallurgical-Grade Silicon Through Cu-Catalyzed Chemical Leaching. JOM 70, 2041–2047 (2018). https://doi.org/10.1007/s11837-018-3058-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3058-y

Navigation