Skip to main content
Log in

A Composite (Taguchi-Utility-RSM) Approach for Optimizing the Tribological Responses of Polytetrafluoroethylene (PTFE) Nanocomposites for Self-lubrication Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Purpose

A composite approach (Taguchi-Utility-RSM) is proposed to optimize the Tribological responses of Polytetrafluoroethylene (PTFE)/Halloysite nanotubes (HNTs) nanocomposite material for self-lubrication applications. These nanocomposites can be utilized as slide bearings for conveyors in paper, textile, and food industries. The main objective is to determine the optimum input parameters, those will give minimum wear rate, minimum coefficient of friction and maximum specific wear energy.

Methods

Coefficient of friction (COF), specific wear rate (SWR), and specific wear energy (EW) are considered as responses. Effect of input parameters such as composition (wt.% HNT addition), load, sliding speed and sliding distance on the output responses are studied. As per Taguchi orthogonal array of L27, experiments have been conducted on the PTFE/HNT nanocomposites on Pin on Disk apparatus. The weights values are calculated based on designer’s choice and utility index values for all experimental runs are evaluated. Later, by using response surface methodology the utility index values are optimized for maximum utilization.

Results

The response values are measured and calculated. Taguchi method is used and SN ratio for main effects is plotted. Single response optimization is carried out corresponding to optimum values of COF (C2L1D1S1), SWR (C1L1D2S2), and EW (C1L1D3S2). Utility method is followed and utility index values for each run are calculated.

Surface plots are plotted and found the interaction effect of input factors on the utility index.

Conclusions

In optimization, 4% of composition, 8.5354 N of load, 2 km of distance and speed of 1 m/s are found to be optimum for maximum utility index of 15.5032 with desirability value of 1 and is observed within 95% confidence interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rymuza Z (2007) Tribology of polymers. Arch Civ Mech Eng 7:177–184. https://doi.org/10.1016/S1644-9665(12)60235-0

    Article  Google Scholar 

  2. Friedrich K, Lu Z, Hager A M (1995) Recent advances in polymer composites’ tribology. Wear 190:139–144. https://doi.org/10.1016/0043-1648(96)80012-3

    Article  CAS  Google Scholar 

  3. Burris D L, Sawyer W G (2006) A low friction and ultra low wear rate PEEK/PTFE composite. Wear 261:410–418. https://doi.org/10.1016/j.wear.2005.12.016

    Article  CAS  Google Scholar 

  4. Xue Y, Cheng X (2001) Tensile properties of glass fiber reinforced PTFE using a rare-earth surface modifier. J Mater Sci Lett 20:1729–1731. https://doi.org/10.1023/A:1012450108991

    Article  CAS  Google Scholar 

  5. Khedkar J, Negulescu I, Meletis E I (2002) Sliding wear behavior of PTFE composites. Wear 252:361–369. https://doi.org/10.1016/S0043-1648(01)00859-6

    Article  CAS  Google Scholar 

  6. Sawyer W G, Freudenberg K D, Bhimaraj P, Schadler L S (2003) A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 254:573–580. https://doi.org/10.1016/S0043-1648(03)00252-7

    Article  CAS  Google Scholar 

  7. Burris D L, Sawyer W G (2005) Tribological sensitivity of PTFE/alumina nanocomposites to a range of traditional surface finishes. Tribol Trans 48:147–153. https://doi.org/10.1080/05698190590923842

    Article  CAS  Google Scholar 

  8. Lee J-Y, Lim D-P, Lim D-S (2007) Tribological behavior of PTFE nanocomposite films reinforced with carbon nanoparticles. Compos Part B Eng 38:810–816. https://doi.org/10.1016/j.compositesb.2006.12.006

    Article  CAS  Google Scholar 

  9. Shi Y, Feng X, Wang H, Lu X (2007) Tribological properties of PTFE composites filled with surface-treated carbon fiber. J Mater Sci 42:8465–8469

    Article  CAS  Google Scholar 

  10. Burris D L, Zhao S, Duncan R et al (2009) A route to wear resistant PTFE via trace loadings of functionalized nanofillers. Wear 267:653–660. https://doi.org/10.1016/j.wear.2008.12.116

    Article  CAS  Google Scholar 

  11. Shi Y, Mu L, Feng X, Lu X (2012) A study of tribological and mechanical properties of PTFE composites filled with surface treated K2Ti6O13 whisker. J Appl Polym Sci 124:1456–1463. https://doi.org/10.1002/app.35158

    Article  CAS  Google Scholar 

  12. Li F, Hu K, Li JL, Zhao BY (2001) The friction and wear characteristics of nanometer ZnO filled polytetrafluoroethylene. Wear 249:877–882. https://doi.org/10.1016/S0043-1648(01)00816-X

    Article  CAS  Google Scholar 

  13. Li F, Yan F Y, Yu L G, Liu W M (2000) The tribological behaviors of copper-coated graphite filled PTFE composites. Wear 237:33–38. https://doi.org/10.1016/S0043-1648(99)00303-8

    Article  CAS  Google Scholar 

  14. Liu M, Jia Z, Jia D, Zhou C (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39:1498–1525. https://doi.org/10.1016/j.progpolymsci.2014.04.004

    Article  CAS  Google Scholar 

  15. Rawtani D, Agrawal Y K (2012) Multifarious applications of halloysite nanotubes: a review. Rev Adv Mater Sci 30:282–295

    CAS  Google Scholar 

  16. Deng S, Zhang J, Ye L, Wu J (2008) Toughening epoxies with halloysite nanotubes. Polymer (Guildf) 49:5119–5127

    Article  CAS  Google Scholar 

  17. Pasbakhsh P, Ismail H, Fauzi M N A, Bakar A A (2010) EPDM/modified halloysite nanocomposites. Appl Clay Sci 48:405–413. https://doi.org/10.1016/j.clay.2010.01.015

    Article  CAS  Google Scholar 

  18. Ulrich A, Handge A, Katrin Hedicke V (2010) Composites of polyamide 6 and silicate nanotubes of the mineral halloysite: influence of molecular weight on thermal, mechanical and rheological properties. Polymer (Guildf) 51:2690–2699. https://doi.org/10.1016/j.polymer.2010.04.041

    Article  CAS  Google Scholar 

  19. Prashantha K, Lacrampe M F, Krawczak P (2011) Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: eEffect of halloysites treatment on structural and mechanical properties. Express Polym Lett 5:295–307. https://doi.org/10.3144/expresspolymlett.2011.30

    Article  CAS  Google Scholar 

  20. Rajmohan T, Palanikumar K, Davim J, Premnath AA (2014) Modeling and optimization in tribological parameters of polyether ether ketone matrix composites using D-optimal design. J Thermoplast Compos Mater 0892705713518790. https://doi.org/10.1177/0892705713518790

  21. Yadav S M, Budan D A, Basavarajappa S et al (2012) Studies on wear resistance of PTFE filled with glass and bronze particles based on taguchi technique. J Eng Sci Technol Rev 5:26–29. https://doi.org/10.1177/0892705712446801

    Article  CAS  Google Scholar 

  22. Mohan N, Natarajan S, Kumareshbabu S P (2010) Investigation on two-body abrasive wear behavior of silicon carbide filled glass fabric-epoxy composites. Wear 9:231–246

    Google Scholar 

  23. Raghavendra G, Samantarai S P, Acharya SK OS (2012) Modeling of abrasive wear behaviour of natural fiber (rice husk ceramic) epoxy composite using response surface methodology. Casp J Appl Sci Res 1:182–189

    Google Scholar 

  24. Subbaya K M, Suresha B, Rajendra N, Varadarajan Y S (2012) Grey-based Taguchi approach for wear assessment of SiC filled carbon-epoxy composites. Mater Des 41:124–130. https://doi.org/10.1016/j.matdes.2012.04.051

    Article  CAS  Google Scholar 

  25. Karande P, Gauri SK, Chakraborty S (2013) Applications of utility concept and desirability function for materials selection. Materials and design. Mater Des 45:349–358. https://doi.org/10.1016/j.matdes.2012.08.067

    Article  Google Scholar 

  26. Singh A K, Siddhartha, Gupta P, Singh P K (2016) Evaluation of mechanical and erosive wear characteristics of TiO2 and ZnO filled bi-directional E-glass fiber based vinyl ester composites. Silicon 1–19. https://doi.org/10.1007/s12633-016-9447-3

  27. Cheema M S, Dvivedi A, Sharma A K (2013) A hybrid approach to multi-criteria optimization based on user’s preference rating. Proc Inst Mech Eng Part B J Eng Manuf 227:1733–1742. https://doi.org/10.1177/0954405413491958

    Article  Google Scholar 

  28. Nayak B B, Mahapatra S S (2014) A utility concept approach for multi-objective optimization of taper cutting operation using WEDM. Procedia Eng 97:469–478. https://doi.org/10.1016/j.proeng.2014.12.271

    Article  Google Scholar 

  29. Sahin Y (2015) Analysis of abrasive wear behavior of PTFE composite using Taguchi’s technique. Cogent Eng 1:1–15. https://doi.org/10.1080/23311916.2014.1000510

    Article  Google Scholar 

  30. Blau P J (2009) Friction science and technology. CRC Press, Boca Raton

    Google Scholar 

  31. Conte M, Igartua A (2012) Study of PTFE composites tribological behavior. Wear 296:568–574. https://doi.org/10.1016/j.wear.2012.08.015

    Article  CAS  Google Scholar 

  32. Myers R H, Montgomery D C, Anderson-Cook C (2009) Response surface methodology: process and product optimization using designed experiments. Wiley Ser Probab Stat 704. https://doi.org/10.2307/1270613

  33. Draper N, John J (1988) Response-surface designs for quantitative and qualitative variables. Technometrics 30:423–428. https://doi.org/10.2307/1269805

    Article  Google Scholar 

  34. Gamini S, Vasu V, Bose S (2017) Tube-like natural halloysite/poly(tetrafluoroethylene) nanocomposites: simultaneous enhancement in thermal and mechanical properties. Mater Res Express 4:45301. https://doi.org/10.1088/2053-1591/aa68b6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamini Suresh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, G., Vasu, V. & Rao, M.V. A Composite (Taguchi-Utility-RSM) Approach for Optimizing the Tribological Responses of Polytetrafluoroethylene (PTFE) Nanocomposites for Self-lubrication Applications. Silicon 10, 2043–2053 (2018). https://doi.org/10.1007/s12633-017-9718-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-017-9718-7

Keywords

Navigation