Skip to main content
Log in

Improvement of Subthreshold Characteristics of Dopingless Tunnel FET Using Hetero Gate Dielectric Material: Analytical Modeling and Simulation

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

An improved subthreshold analytical model of Dual Material Double Gate Junctionless Tunnel FET (DMDG JLTFET) with stacked / hetero-dielectric gate oxide structure is proposed. The stacked gate oxide structure comprises of Silicon-dioxide (SiO2) and Titanium Oxide (TiO2). The high-K gate stack engineered device overcomes the Short Channel Effects (SCEs) caused by the ultrathin silicon devices. The subthreshold analysis is carried out by solving a two-dimensional Poisson’s equation using Parabolic approximation method. These characteristics are analyzed against various device parameters. Also, the impact of different high-K gate oxide materials with SiO2 is also studied. A comparative analysis of short channel effects for DMDG TFET and DMDG JLTFET has been carried out. The results reveal that the proposed device provides better ION current, low leakage current and improved Transconductance-to-drain current ratio. Using TCAD Sentaurus device simulator, the subthreshold analytical model results have been simulated and verified with other TFET models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalra S, Bhattacharyya AB (2017) Scalable α -power law based MOSFET model for characterization of ultra deep submicron digital integrated circuit design. AEU - Int J Electron Commun 83:180–187. https://doi.org/10.1016/j.aeue.2017.08.029

    Article  Google Scholar 

  2. Thompson SE, Parthasarathy S (2006) Moore’s law: the future of Si microelectronics. Mater Today 9:20–25. https://doi.org/10.1016/S1369-7021(06)71539-5

    Article  CAS  Google Scholar 

  3. Zhang Q, Zhao W, Seabaugh A (2006) Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett 27:297–300. https://doi.org/10.1109/LED.2006.871855

    Article  CAS  Google Scholar 

  4. Ahmad S, Alam N, Hasan M (2018) Robust TFET SRAM cell for ultra-low power IoT applications. AEU - Int J Electron Commun 89:70–76. https://doi.org/10.1016/j.aeue.2018.03.029

    Article  Google Scholar 

  5. Verhulst AS, Soree B, Leonelli D, Vandenberghe WG, Groeseneken G (2010) Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor. J Appl Phys 107. https://doi.org/10.1063/1.3277044

  6. Reddy GV, Kumar MJ (2005) A new dual-material double-gate (DMDG) nanoscale SOI MOSFET - two-dimensional analytical modeling and simulation. IEEE Trans Nanotechnol 4:260–268. https://doi.org/10.1109/TNANO.2004.837845

    Article  Google Scholar 

  7. Saurabh S, Kumar MJ (2011) Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans Electron Devices. 58:404–410. https://doi.org/10.1109/TED.2010.2093142

    Article  CAS  Google Scholar 

  8. Pon A, Sivanaga K, Poorna V, Ramesh R (2019) Effect of interface trap charges on the performance of asymmetric dielectric modulated dual short gate tunnel FET. AEU - Int J Electron Commun 102:1–8. https://doi.org/10.1016/j.aeue.2019.02.007

    Article  Google Scholar 

  9. Vanitha P, Balamurugan NB, Lakshmi Priya G (2015) Triple material surrounding gate (TMSG) nanoscale tunnel FET-analytical modeling and simulation. J Semicond Technol Sci 15:585–593. https://doi.org/10.5573/JSTS.2015.15.6.585

    Article  Google Scholar 

  10. Rajendran K, Samudra GS (2000) Modelling of transconductance-to-current ratio (gm/ID) analysis on double-gate SOI MOSFETs. Semicond Sci Technol 15:139–144. https://doi.org/10.1088/0268-1242/15/2/311

    Article  CAS  Google Scholar 

  11. Tiwari PK, Dubey S, Singh K, Jit S (2012) Analytical modeling of subthreshold current and subthreshold swing of short-channel triple-material double-gate (TM-DG) MOSFETs. Superlattice Microst 51:715–724. https://doi.org/10.1016/j.spmi.2012.02.009

    Article  CAS  Google Scholar 

  12. Bagga N, Dasgupta S (2017) Surface potential and drain current analytical model of gate all around triple metal TFET. IEEE Trans Electron Devices. 64:606–613. https://doi.org/10.1109/TED.2016.2642165

    Article  CAS  Google Scholar 

  13. Ajayan J, Nirmal D, Prajoon P, Charles Pravin J (2017) Analysis of nanometer-scale InGaAs/InAs/InGaAs composite channel MOSFETs using high-K dielectrics for high speed applications. AEU - Int. J Electron Commun 79:151–157. https://doi.org/10.1016/j.aeue.2017.06.004

    Article  Google Scholar 

  14. Boucart K, Ionescu AM (2007) Double-gate tunnel FET with high-K gate dielectric. IEEE Trans Electron Devices 54:1725–1733. https://doi.org/10.1109/TED.2007.899389

    Article  CAS  Google Scholar 

  15. Chen Z, Xiao Y, Tang M, Xiong Y, Huang J, Li J, Gu X, Zhou Y (2012) Surface-potential-based drain current model for long-channel junctionless double-gate MOSFETs. IEEE Trans Electron Devices. 59:3292–3298. https://doi.org/10.1109/TED.2012.2221164

    Article  CAS  Google Scholar 

  16. Amin S, Sarin RK (2016) Enhanced analog performance of doping-less dual material and gate stacked architecture of junctionless transistor with high-k spacer. Appl Phys A Mater Sci Process 122:1–9. https://doi.org/10.1007/s00339-016-9904-2

    Article  CAS  Google Scholar 

  17. Chiang TK (2012) A quasi-two-dimensional threshold voltage model for short-channel junctionless double-gate MOSFETs. IEEE Trans Electron Devices 59:2284–2289. https://doi.org/10.1109/TED.2012.2202119

    Article  Google Scholar 

  18. Ghosh B, Akram MW (2013) Junctionless tunnel field effect transistor. IEEE Electron Device Lett 34:584–586. https://doi.org/10.1109/LED.2013.2253752

    Article  CAS  Google Scholar 

  19. Ghosh B, Bal P, Mondal P (2013) A junctionless tunnel field effect transistor with low subthreshold slope. J Comput Electron 12:428–436. https://doi.org/10.1007/s10825-013-0450-2

    Article  CAS  Google Scholar 

  20. Bal P, Ghosh B, Mondal P, Akram MW, Tripathi BMM (2014) Dual material gate junctionless tunnel field effect transistor. J Comput Electron 13:230–234. https://doi.org/10.1007/s10825-013-0505-4

    Article  CAS  Google Scholar 

  21. Priya GL, Balamurugan NB (2019) New dual material double gate junctionless tunnel FET: subthreshold modeling and simulation. AEU - Int J Electron Commun. 99:130–138. https://doi.org/10.1016/j.aeue.2018.11.037

    Article  Google Scholar 

  22. Dutta U, Soni MK, Pattanaik M (2019) Simulation study of hetero dielectric tri material gate tunnel FET based common source amplifier circuit. AEU - Int J Electron Commun. 99:258–263. https://doi.org/10.1016/j.aeue.2018.12.004

    Article  Google Scholar 

  23. Darwin S, Samuel TSA (2019) A holistic approach on Junctionless dual material double gate (DMDG) MOSFET with high k gate stack for low power digital applications. Silicon:1–11. https://doi.org/10.1007/s12633-019-00128-2

  24. Kumar S, Goel E, Singh K, Singh B, Singh PK, Baral K, Jit S (2017) 2-D analytical modeling of the electrical characteristics of dual-material double-gate TFETs with a SiO2/HfO2 stacked gate-oxide structure. IEEE Trans Electron Devices. 64:960–968. https://doi.org/10.1109/TED.2017.2656630

    Article  CAS  Google Scholar 

  25. Kumar P, Bhowmick B (2018) A physics based threshold voltage model for hetero - dielectric dual material gate Schottky barrier MOSFET, international journal of numerical Modelling: electronic networks. Devices Fields 31:1–11. https://doi.org/10.1002/jnm.2320

    Article  CAS  Google Scholar 

  26. Keighobadi D, Mohammadi S, Fathipour M (2019) An analytical drain current model for the Cylindrical Channel gate-all-around Heterojunction tunnel FETs. IEEE Trans Electron Devices 66:3646–3651. https://doi.org/10.1109/TED.2019.2922232

    Article  CAS  Google Scholar 

  27. Mohammadi S, Keighobadi D (2019) A universal analytical potential model for double-gate Heterostructure tunnel FETs. IEEE Trans Electron Devices. 66:1605–1612. https://doi.org/10.1109/TED.2019.2895277

    Article  CAS  Google Scholar 

  28. Kale S, Kondekar PN (2017) Design and investigation of dielectric engineered dopant segregated Schottky barrier MOSFET with NiSi source/drain. IEEE Trans Electron Devices 64:4400–4407. https://doi.org/10.1109/TED.2017.2754881

    Article  CAS  Google Scholar 

  29. Dash DK, Saha P, Sarkar SK (2018) Analytical modeling of asymmetric hetero-dielectric engineered dual-material DG-TFET. J Comput Electron 17:181–191. https://doi.org/10.1007/s10825-017-1102-8

    Article  CAS  Google Scholar 

  30. Robertson J, Wallace RM (2015) High – K materials and metal gates for CMOS applications. Mater Sci Eng R 88:1–41. https://doi.org/10.1016/j.mser.2014.11.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Priya G.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

G, L.P., N B, B. Improvement of Subthreshold Characteristics of Dopingless Tunnel FET Using Hetero Gate Dielectric Material: Analytical Modeling and Simulation. Silicon 12, 2189–2201 (2020). https://doi.org/10.1007/s12633-019-00314-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00314-2

Keywords

Navigation