Skip to main content
Log in

Effects of Co-Silanized Silica on the Mechanical Properties and Thermal Characteristics of Natural Rubber/Styrene-Butadiene Rubber Blend

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The main aim of this study is to improve the mechanical and thermal stability of the NR/SBR blend using nanosilica. The used nanosilica particles were extracted from hexafluorosilicic acid (H2SiF6) via direct precipitation, using a 20% NH3 solution; after which, they were co-modified with p-tolyltriethoxy silane (PTTES) and bis-(γ-triethoxysilylpropyl)-tetrasulfide (Si-69) silane coupling agents. Many techniques such as the thermal gravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS), were applied to characterize the obtained nanosilica, and to confirm the success of the silanization. The co-modified silica was incorporated into the NR/SBR blend by a conventional two-roll mixing mill and an internal closed mixer, to prepare silica/NR/SBR composites. The morphological, mechanical, rheological, and thermal characteristics of the nanosilica-reinforced NR/SBR rubber blend were also examined in detail. The results indicated that the co-modified silica was an effective reinforcement material for the NR/SBR blend, and that it improved the mechanical properties and thermal stability of the bound rubber. The tensile strength and hardness of the 4 wt.% co-SiO2/NR/SBR composite were higher by 35.23% and 20.12%, respectively, compared with those of the pristine NR/SBR (80/20) blend, in addition to a higher residual char content and decomposition temperature, obtained from thermal degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang W, Jiao Y, Lu Y, Liu J, Zeng X, Wang L, Zhang Y, Guo Y (2017) Enhanced thermal stability of gamma radiation vulcanized polybutadiene rubber (PBR)/nature rubber (NR) blends with sulfur added. Mater Lett 186:186–188. https://doi.org/10.1016/j.matlet.2016.09.128

    Article  CAS  Google Scholar 

  2. Nabil H, Ismail H (2014) Enhancing the thermal stability of natural rubber/recycled ethylene-propylene-diene rubber blends by means of introducing pre-vulcanised ethylene-propylene-diene rubber and electron beam irradiation. Master Design 56:1057–1067. https://doi.org/10.1016/j.matdes.2013.12.020

    Article  CAS  Google Scholar 

  3. Ashok N, Balachandran M, Lawrence F (2018) Organo-modified layered silicate nanocomposites of EPDM–chlorobutyl rubber blends for enhanced performance in c radiation and hydrocarbon environment. J Compos Mater 52:1–13. https://doi.org/10.1177/0021998318763504

    Article  CAS  Google Scholar 

  4. Yuan D, Xu C, Chen Z, Chen Y (2014) Crosslinked bicontinuous biobased polylactide/natural rubber materials: super toughness, “net-like”-structure of NR phase and excellent interfacial adhesion. Polym Test 38:73–80. https://doi.org/10.1016/j.polymertesting.2014.07.004

    Article  CAS  Google Scholar 

  5. Maroufkhani M, Katbab A, Liu W, Zhang J (2017) Polylactide (PLA) and acrylonitrile butadiene rubber (NBR) blends: the effect of ACN content on morphology, compatibility and mechanical properties. Polym 115:37–44. https://doi.org/10.1016/j.polymer.2017.03.025

    Article  CAS  Google Scholar 

  6. Rosli NA, Ahmad I, Anuar FH, Abdullah I (2016) Mechanical and thermal properties of natural rubber-modified poly(lactic acid) compatibilized with telechelic liquid natural rubber. Polym Test 54:196–202. https://doi.org/10.1016/j.polymertesting.2016.07.021

    Article  CAS  Google Scholar 

  7. Colom X, Marín-Genesca M, Mujal R, Formela K, Canãvate J (2018) Structural and physico-mechanical properties of natural rubber/GTR composites devulcanized by microwaves: influence of GTR source and irradiation time. J Compos Mater 22:1–10. https://doi.org/10.1177/0021998318761554

    Article  CAS  Google Scholar 

  8. Younan AF, Ismail MN, Khalaf AI (1995) Thermal stability of natural rubber-polyester short fiber composites. Polym Degrad Stab 48:103–109. https://doi.org/10.1016/0141-3910(95)00022-E

    Article  CAS  Google Scholar 

  9. Du X, Zhang Y, Pan X, Meng F, You J, Wang Z (2019) Preparation and properties of modified porous starch/carbon black/natural rubber composites. Compos B Eng 156:1–7. https://doi.org/10.1016/j.compositesb.2018.08.033

    Article  CAS  Google Scholar 

  10. Salaeh S, Banda T, Pongdong V, Wießner S, Das A, Thitithammawong A (2018) Compatibilization of poly(vinylidene fluoride)/natural rubber blend by poly(methyl methacrylate) modified natural rubber. Euro Polym J 107:132–142. https://doi.org/10.1016/j.eurpolymj.2018.08.007

    Article  CAS  Google Scholar 

  11. Manohar N, Jayaramudu J, Suchismita S, Rajkumar K, Reddy AB, Sadiku ER, Priti R, Maurya DJ (2017) A unique application of the second order derivative of FTIR-ATR spectra for compositional analyses of natural rubber and polychloroprene rubber and their blends. Polym Test 62:447–453. https://doi.org/10.1016/j.polymertesting.2017.07.030

    Article  CAS  Google Scholar 

  12. Mansilla MA, Marzocca AJ, Macchi C, Somoza A (2017) Natural rubber/styrene-butadiene rubber blends prepared by solution mixing: influence of vulcanization temperature using a semi-EV sulfur curing system on the microstructural properties. Polym Test 63:150–157. https://doi.org/10.1016/j.polymertesting.2017.07.025

    Article  CAS  Google Scholar 

  13. Tangudom P, Thongsang S, Sombatsompop N (2014) Cure and mechanical properties and abrasive wear behavior of natural rubber, styrene-butadiene rubber and their blends reinforced with silica hybrid fillers. Mater Design 53:856–864. https://doi.org/10.1016/j.matdes.2013.07.024

    Article  CAS  Google Scholar 

  14. Mebert AM, Baglole CJ, Desimone MF, Maysinger D (2017) Nanoengineered silica: properties, applications and toxicity. Food Chem Toxicol 109:753–770. https://doi.org/10.1016/j.fct.2017.05.054

    Article  CAS  PubMed  Google Scholar 

  15. Spratte T, Plagge J, Wunde M, Klüppel M (2017) Investigation of strain-induced crystallization of carbon black and silica filled natural rubber composites based on mechanical and temperature measurements. Polym 115:12–20. https://doi.org/10.1016/j.polymer.2017.03.019

    Article  CAS  Google Scholar 

  16. Chandra CSJ, Bipinbal PK, Sunil KN (2017) Viscoelastic behaviour of silica filled natural rubber composites-correlation of shear with elongational testing. Polym Test 60:187–197. https://doi.org/10.1016/j.polymertesting.2017.03.023

    Article  CAS  Google Scholar 

  17. Tchalla ST, Gac PYL, Maurin R, Creachcade R (2017) Polychloroprene behaviour in a marine environment: role of silica fillers. Polym Degrad Stab 139:28–37. https://doi.org/10.1016/j.polymdegradstab.2017.03.011

    Article  CAS  Google Scholar 

  18. Prasertsri S, Rattanasom N (2011) Mechanical and damping properties of silica/natural rubber composites prepared from latex system. Polym Test 30:515–526. https://doi.org/10.1016/j.polymertesting.2011.04.001

    Article  CAS  Google Scholar 

  19. Rocha EBD, Linhares FN, Gabriel CFS, Sousa AMF, Furtado CRG (2018) Stress relaxation of nitrile rubber composites filled with a hybrid metakaolin/carbon black filler under tensile and compressive forces. Appl Clay Sci 151:181–188. https://doi.org/10.1016/j.clay.2017.10.008

    Article  CAS  Google Scholar 

  20. Zhao S, Xie S, Sun P, Zhao Z, Li L, Shao X, Liu X, Xin Z (2018) Synergistic effect of graphene and silicon dioxide hybrids through hydrogen bonding self-assembly in elastomer composites. RSC Adv 8:17813–17825. https://doi.org/10.1039/C8RA01659C

    Article  CAS  Google Scholar 

  21. Mitryaeva NS, Akimenko SS (2016) Influence of multi-walled carbon nanotubes in carbon black mixture on rubber properties. Procedure Eng 152:689–693. https://doi.org/10.1016/j.proeng.2016.07.674

    Article  CAS  Google Scholar 

  22. Geng H, Zhao Y, Liu J, Cui Y, Wang Y, Zhao Q, Wang S (2016) Hollow mesoporous silica as a high drug loading carrier for regulation insoluble drug release. Int J Pharm 510:184–194. https://doi.org/10.1016/j.ijpharm.2016.05.067

    Article  CAS  PubMed  Google Scholar 

  23. Jiao J, Li X, Zhang S, Liu J, Di D, Zhang Y, Zhao Q, Wang S (2016) Redox and pH dual-responsive PEG and chitosan-conjugated hollow mesoporous silica for controlled drug release. Mater Sci Eng C 67:26–33. https://doi.org/10.1016/j.msec.2016.04.091

    Article  CAS  Google Scholar 

  24. Cheng YJ, Zeng X, Cheng DB, Xu XD, Zhang XZ, Zhuo RX, He F (2016) Functional mesoporous silica nanoparticles (MSNs) for highly controllable drug release and synergistic therapy. Colloids Surf B Bio 145:217–225. https://doi.org/10.1016/j.colsurfb.2016.04.051

    Article  CAS  Google Scholar 

  25. Alkimim IP, Silva LL, Cardoso D (2017) Synthesis of hybrid spherical silicas and application in catalytic transesterification reaction. Micropor Mesopor Mater 254:37–44. https://doi.org/10.1016/j.micromeso.2017.04.018

    Article  CAS  Google Scholar 

  26. Claesson EM, Mehendale NC, Gebbink RJMK, Koten G, Philipse AP (2007) Magnetic silica colloids for catalysis. J Magnet Magneti Mater 311:41–45. https://doi.org/10.1016/j.jmmm.2006.11.166

    Article  CAS  Google Scholar 

  27. Anbarasu G, Malathy M, Karthikeyan P, Rajavel R (2017) Silica functionalized cu(II) acetylacetonate Schiff base complex: an efficient catalyst for the oxidative condensation reaction of benzyl alcohol with amines. J Solid State Chem 253:305–312. https://doi.org/10.1016/j.jssc.2017.06.012

    Article  CAS  Google Scholar 

  28. Kang KK, Oh HS, Kim DY, Shim G, Lee CS (2017) Synthesis of silica nanoparticles using biomimetic mineralization with polyallylamine hydrochloride. J Colloid Interf Sci 507:145–153. https://doi.org/10.1016/j.jcis.2017.07.115

    Article  CAS  Google Scholar 

  29. Gustafsson H, Holmberg K (2017) Emulsion-based synthesis of porous silica. Adv Colloid Interf Sci 247:426–434. https://doi.org/10.1016/j.cis.2017.03.002

    Article  CAS  Google Scholar 

  30. Elineema G, Kim JK, Hilonga A, Shao GN, Kim YN, Quang DV, Sarawade PB, Kim HT (2013) Quantitative recovery of high purity nanoporous silica from waste products of the phosphate fertilizer industry. J Ind Eng Chem 19:63–67. https://doi.org/10.1016/j.jiec.2012.07.001

    Article  CAS  Google Scholar 

  31. Sarawade PB, Kim JK, Hilonga A, Kim HT (2010) Recovery of high surface area mesoporous silica from waste hexafluorosilicic acid (H2SiF6) of fertilizer industry. J Hazard Mater 173:576–580. https://doi.org/10.1016/j.jhazmat.2009.08.125

    Article  CAS  PubMed  Google Scholar 

  32. Yu HS, Rhee KI, Lee CK, Yang DH (2000) Two-step ammoniation of by-product fluosilicic acid to produce high quality amorphous silica. Korean J Chem Eng 17:401–408. https://doi.org/10.1007/BF02706850

    Article  CAS  Google Scholar 

  33. Krysztafkiewicz A, Rager B, Maik M (1996) Silica recovery from waste obtained in hydrofluoric acid and aluminum fluoride production from fluosilicic acid. J Hazard Mater 48:31–49. https://doi.org/10.1016/0304-3894(95)00126-3

    Article  CAS  Google Scholar 

  34. Castillo X, Pizarro J, Ortiz C, Cid H, Flores M, Canck E, Voort PVD (2018) A cheap mesoporous silica from fly ash as an outstanding adsorbent for sulfate in water. Micropor Mesopor Mater 272:184–192. https://doi.org/10.1016/j.micromeso.2018.06.014

    Article  CAS  Google Scholar 

  35. Liu T, Jin F, Wang X, Fan Y, Yuan M (2017) Synthesis of titanium containing MCM-41 from industrial hexafluorosilicic acid as epoxidation catalyst. Catal Today 297:316–323. https://doi.org/10.1016/j.cattod.2017.03.011

    Article  CAS  Google Scholar 

  36. Chen L, Jia Z, Tang Y, Wu L, Luo Y, Jia D (2017) Novel functional silica nanoparticles for rubber vulcanization and reinforcement. Compos Sci Technol 144:11–17. https://doi.org/10.1016/j.compscitech.2016.11.005

    Article  CAS  Google Scholar 

  37. Qiao H, Chao M, Hui D, Liu J, Zheng J, Lei W, Zhou X, Wang R, Zhang L (2017) Enhanced interfacial interaction and excellent performance of silica/epoxy group-functionalized styrene-butadiene rubber (SBR) nanocomposites without any coupling agent. Compos B Eng 114:356–364. https://doi.org/10.1016/j.compositesb.2017.02.021

    Article  CAS  Google Scholar 

  38. Zhong B, Jia Z, Luo Y, Jia D (2015) Surface modification of silica with N-cyclohexyl-2-benzothiazole sulfenamide for styrene-butadiene rubber composites with dramatically improved mechanical property. Mater Lett 145:41–43. https://doi.org/10.1016/j.matlet.2015.01.069

    Article  CAS  Google Scholar 

  39. Vu CM, Vu HT, Choi HJ (2015) Fabrication of natural rubber/epoxidized natural rubber/nanosilica nanocomposites and their physical characteristics. Macromol Res 23:284–290. https://doi.org/10.1007/s13233-015-3040-2

    Article  CAS  Google Scholar 

  40. Bansod ND, Kapgate BP, Das C, Das A, Basu D, Debnath SC (2016) Compatibilization of natural rubber/nitrile rubber blends by sol-gel nano-silica generated by in situ method. J Sol Gel Sci Technol 80:548–559. https://doi.org/10.1007/s10971-016-4114-0

    Article  CAS  Google Scholar 

  41. Bansod ND, Kapgate BP, Das C, Basu D, Debnath SC, Royc K, Wiessner S (2015) Controlled growth of in situ silica in a NR/CR blend by a solution sol-gel method and the studies of its composite properties. RSC Adv 5:53559–53568. https://doi.org/10.1039/C5RA08971A

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.02-2017.15 (for Cuong Manh Vu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuong Manh Vu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bach, QV., Vu, C.M. & Vu, H.T. Effects of Co-Silanized Silica on the Mechanical Properties and Thermal Characteristics of Natural Rubber/Styrene-Butadiene Rubber Blend. Silicon 12, 1799–1809 (2020). https://doi.org/10.1007/s12633-019-00281-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00281-8

Keywords

Navigation