Skip to main content
Log in

Rotary Ultrasonic Drilling of Silica Glass BK-7: Microstructural Investigation and Process Optimization Through TOPSIS

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Laser and optics industries, are continueosly looking for glasses that posses excellent optical properties. Silica based glass BK7 is emerging as the pragmatic solution to meet these industrial needs that too with low fabrication cost. Conventional machining processes find it hard to process BK7 due to high hardness and low fracture toughness. In order to overcome the practical barriers of all the alternative processes, rotary ultrasonic machining has been attempted for drilling BK7. Taguchi based L9 array has been used for experimentation. Feed rate, tool rotational speed and ultrasonic power have been chosen as input variables. The drilling efficacy was evaluated considering the chipping width (CW), Taper (T) and material removal rate (MRR) as output responses. Main effects plots were drawn to reveal the effect of process variables on performance indices. ANOVA was used to identify the significant factors. It also figured out the extent to which significant factors influence the output responses. As Taguchi approach is not capable of simultaneous optimization of responses, TOPSIS approach was coupled with it for multi-response optimization. The predicted optimal solution, feed 0.60 mm/min, tool RPM 5000 and ultrasonic power 70% yielded the superior performance. The dominance of feed over other input factors made it the most crucial factor. Fractography highlighted the mixed flow of material at low feed rate, giving rise to superior surface finish. All the findings were confirmed experimentally as well as statistically. All the predicted results were found finely tuned with experimental results during confirmation experiments at 95% confidence level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CW:

Chipping width

T:

Taper

MRR:

Material removal rate

TRS:

Tool rotational speed

FR:

Feed rate

UP:

Ultrasonic power

ANOVA:

analysis of variance

USM:

Ultrasonic machining

RUM:

Rotary ultrasonic machining

RUD:

Rotary ultrasonic drilling

TOPSIS:

Technique for Order Preference by Similarity to Ideal Solution

S/N:

Signal to noise ratio

CWMEAN :

Mean value of chipping width

TMEAN :

Mean value of taper

MRRMEAN :

Mean value of material removal rate

S/NCW :

Signal to noise ratio for chipping width

S/NT :

Signal to noise ratio for taper

S/NMRR :

Signal to noise ratio for material removal rate

\( {\overline{CW}_m} \) :

Overall mean of chipping width

\( {\overline{T}_m} \) :

Overall mean of taper

\( {\overline{MRR}_m} \) :

Overall mean of material removal

S :

Negative best solutions

S+ :

Positive best solutions

Dm:

Decision matrix

Nij :

Normalized decision matrix

U:

Weighted normalized matrix

\( {G}_{i}^{+} \) :

Distance of alternative from positive best solution

\( {G}_{i}^{-} \) :

Distance of alternative from negative best solution

PV:

Preference value

C.I.:

Confidence Interval

References

  1. Pal RK, Garg H, Sarepaka RV, Karar V (2016) Experimental investigation of material removal and surface roughness during optical glass polishing. Mater Manuf Process 31:1613–1620. https://doi.org/10.1080/10426914.2015.1103867

    Article  CAS  Google Scholar 

  2. Barahimi V, Farahnakian M (2016) Experimental investigation of the surface roughness in grinding of BK7 optical glass in Brittle mode. J Mod Process Manuf Prod 5:33–41

    Google Scholar 

  3. Huu Loc P, Shiou F, Yu Z, Hsu W (2013) Investigation of optimal air-driving fluid jet polishing parameters for the surface finish of N-BK7 optical glass. J Manuf Sci Eng 135:1–7. https://doi.org/10.1115/1.4023368

    Article  Google Scholar 

  4. Li HN, Yu TB, Zhu LD, Wang WS (2016) Evaluation of grinding-induced subsurface damage in optical glass BK7. J Mater Process Technol 229:785–794. https://doi.org/10.1016/j.jmatprotec.2015.11.003

    Article  CAS  Google Scholar 

  5. Meral G, Sarıkaya M, Dilipak H, Şeker U (2015) Multi-response optimization of cutting parameters for hole quality in drilling of AISI 1050 steel. Arab J Sci Eng 40:3709–3722. https://doi.org/10.1007/s13369-015-1854-z

    Article  Google Scholar 

  6. Rattan N, Mulik RS (2017) Experimental investigations and multi-response optimization of silicon dioxide (Quartz) machining in magnetic field assisted TW-ECSM process. Silicon 9:663–673. https://doi.org/10.1007/s12633-016-9521-x

    Article  CAS  Google Scholar 

  7. Arooj S, Shah M, Sadiq S (2014) Effect of current in the EDM machining of aluminum 6061 T6 and its effect on the surface morphology. Arab J Sci Eng 39:4187–4199. https://doi.org/10.1007/s13369-014-1020-z

    Article  CAS  Google Scholar 

  8. Hocheng H, Tsao CC (2005) The path towards delamination-free drilling of composite materials. J Mater Process Technol 167:251–264. https://doi.org/10.1016/j.jmatprotec.2005.06.039

    Article  CAS  Google Scholar 

  9. Ning FD, Cong WL, Pei ZJ, Treadwell C (2016) Rotary ultrasonic machining of CFRP: a comparison with grinding. Ultrasonics 66:125–132. https://doi.org/10.1016/j.ultras.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  10. Jain AK, Pandey PM (2016) Experimental investigations of ceramic machining using μ-grinding and μ-rotary ultrasonic machining processes: a comparative study. Mater Manuf Process 1–10. https://doi.org/10.1080/10426914.2016.1198024

  11. Wang J, Feng P, Zhang J et al (2016) Modeling the dependency of edge chipping size on the material properties and cutting force for rotary ultrasonic drilling of brittle materials. Int J Mach Tools Manuf 101:18–27. https://doi.org/10.1016/j.ijmachtools.2015.10.005

    Article  Google Scholar 

  12. Hocheng H, Tsao CC (2005) The path towards delamination-free drilling of composite materials. J Mater Process Technol 167:251–264. https://doi.org/10.1016/j.jmatprotec.2005.06.039

    Article  CAS  Google Scholar 

  13. Hamzah E, Sudin I, Khoo C-Y, Abidin NNZ, Tan M-J (2008) Effect of machining parameters on BK7 Optical glass using conventionaland rotary ultrasonic machines. J JSEM 8:127–132. https://doi.org/10.11395/jjsem.8.s127

    Article  Google Scholar 

  14. Chen S, Jiang Z, Wu Y, Yang H (2011) Development of a grinding—drilling technique for holing optical grade glass. Int J Mach Tools Manuf 51:95–103. https://doi.org/10.1016/j.ijmachtools.2010.12.001

    Article  Google Scholar 

  15. Ning F, Wang H, Cong W, Fernando PKSC (2017) A mechanistic ultrasonic vibration amplitude model during rotary ultrasonic machining of CFRP composites. Ultrasonics 76:44–51. https://doi.org/10.1016/j.ultras.2016.12.012

    Article  PubMed  Google Scholar 

  16. Zhou M, Wang M, Dong G (2016) Experimental investigation on rotary ultrasonic face grinding of SiCp/Al composites. Mater Manuf Process 31:673–678. https://doi.org/10.1080/10426914.2015.1025962

    Article  CAS  Google Scholar 

  17. Zou X, Wy N, Tian Y, Pei ZJ (2013) Cutting temperature in rotary ultrasonic machining of titanium: experimental study using novel Fabry-Perot fibre optic sensors. Int J Manuf Res 8:250–261. https://doi.org/10.1504/IJMR.2013.055242

    Article  Google Scholar 

  18. Cong WL, Pei ZJ, Deines TW, Treadwell C (2011) Rotary ultrasonic machining of CFRP using cold air as coolant: feasible regions. J Reinf Plast Compos 30:899–906. https://doi.org/10.1177/0731684411416266

    Article  CAS  Google Scholar 

  19. Cong W, Pei Z, Deines T, Wang Q (2010) Rotary ultrasonic machining of stainless steels: empirical study of machining variables. Int J Manuf Res 5:370–386. https://doi.org/10.1504/IJMR.2010.033472

    Article  Google Scholar 

  20. Prakash S, Palanikumar K, Manoharan N (2009) Optimization of delamination factor in drilling medium-density fiberboards (MDF) using desirability-based approach. Int J Adv Manuf Technol 45:370–381. https://doi.org/10.1007/s00170-009-1974-2

    Article  Google Scholar 

  21. Gadakh VS (2012) Parametric optimization of wire electrical discharge machining using topsis method. Adv Prod Eng Manag 7:157–164. https://doi.org/10.14743/apem2012.3.138

    Article  Google Scholar 

  22. Walia RS, Shan HS, Kumar P (2006) Multi-response optimization of CFAAFM process through Taguchi method and utility concept. Mater Manuf Process 21:907–914. https://doi.org/10.1080/10426910600837814

    Article  CAS  Google Scholar 

  23. Antil P, Singh S, Manna A (2017) Electrochemical discharge drilling of SiC reinforced polymer matrix composite using Taguchi’s Grey relational analysis. Arab J Sci Eng 43:1257–1266. https://doi.org/10.1007/s13369-017-2822-6

    Article  CAS  Google Scholar 

  24. Churi NJ, Pei ZJ, Treadwell C (2006) Rotary ultrasonic machining of titanium alloy: effects of machining variables. Mach Sci Technol 10:301–321. https://doi.org/10.1080/10910340600902124

    Article  Google Scholar 

  25. Kumar S, Singh AK (2017) Magnetorheological nanofinishing of BK7 glass for lens manufacturing. Mater Manuf Process 33:1188–1196. https://doi.org/10.1080/10426914.2017.1364759

    Article  CAS  Google Scholar 

  26. Tsegaw AA, Shiou F-J, Lin S-P (2015) Ultra-precision polishing of N-Bk7 using an innovative self-propelled abrasive fluid multi-jet polishing tool. Mach Sci Technol 19:262–285. https://doi.org/10.1080/10910344.2015.1018532

    Article  Google Scholar 

  27. Goswami A, Kumar J (2014) Optimization in wire-cut EDM of Nimonic-80A using Taguchi’s approach and utility concept. Eng Sci Technol an Int J 17:236–246. https://doi.org/10.1016/j.jestch.2014.07.001

    Article  Google Scholar 

  28. Agarwal G, Patnaik A, Sharma RK (2014) Thermo-mechanical properties and abrasive wear behavior of silicon carbide filled Woven glass fiber composites. Silicon 6:155–168. https://doi.org/10.1007/s12633-014-9184-4

    Article  CAS  Google Scholar 

  29. Kumar JS, Kalaichelvan K (2017) Taguchi-Grey multi-response optimization on structural parameters of honeycomb core sandwich structure for low velocity impact test. Silicon. https://doi.org/10.1007/s12633-016-9544-3

  30. Daneshmand S, Monfared V, Lotfi Neyestanak AA (2017) Effect of tool rotational and Al2O3 powder in electro discharge machining characteristics of NiTi-60 shape memory alloy. Silicon 9:273–283. https://doi.org/10.1007/s12633-016-9412-1

    Article  CAS  Google Scholar 

  31. Churi NJ, Pei ZJ, Treadwell C (2006) Rotary ultrasonic machining of titanium alloy: effects of machining variables. Mach Sci Technol 10:301–321. https://doi.org/10.1080/10910340600902124

    Article  Google Scholar 

  32. Jiao Y, Hu P, Pei ZJ, Treadwell C (2005) Rotary ultrasonic machining of ceramics: design of experiments. Int J Manuf Technol Manag 7:192–206. https://doi.org/10.1504/IJMTM.2005.006830

    Article  Google Scholar 

  33. Li ZC, Jiao Y, Deines TW et al (2005) Rotary ultrasonic machining of ceramic matrix composites: feasibility study and designed experiments. Int J Mach Tools Manuf 45:1402–1411. https://doi.org/10.1016/j.ijmachtools.2005.01.034

    Article  Google Scholar 

  34. Sharma P, Chakradhar D, Narendranath S (2017) Analysis and optimization of WEDM performance characteristics of Inconel 706 for aerospace application. Silicon. https://doi.org/10.1007/s12633-017-9549-6

  35. Zhang CL, Feng PF, Pei ZJ, Cong WL (2013) Rotary ultrasonic machining of sapphire: feasibility study and designed experiments. Key Eng Mater 589–590:523–528. https://doi.org/10.4028/www.scientific.net/KEM.589-590.523

    Article  Google Scholar 

  36. Cong WL, Feng Q, Pei ZJ et al (2012) Edge chipping in rotary ultrasonic machining of silicon. Int J Manuf Res 7:311–329. https://doi.org/10.1504/IJMR.2012.048699

    Article  Google Scholar 

  37. Zhang C, Cong W, Feng P, Pei Z (2013) Rotary ultrasonic machining of optical K9 glass using compressed air as coolant: a feasibility study. Proc Inst Mech Eng Part B J Eng Manuf 228:504–514. https://doi.org/10.1177/0954405413506195

    Article  Google Scholar 

  38. Feng Q, Cong WL, Pei ZJ, Ren CZ (2012) Rotary ultrasonic machining of carbon fiber-reinforced polymer: feasibility study. Mach Sci Technol 16:380–398. https://doi.org/10.1080/10910344.2012.698962

    Article  CAS  Google Scholar 

  39. Zeng WM, Xu XP, Pei ZJ (2006) Rotary ultrasonic machining of advanced ceramics. Mater Sci Forum 532–533:361–364. https://doi.org/10.4028/www.scientific.net/MSF.532-533.361

    Article  Google Scholar 

  40. Wang J, Feng P, Zhang J et al (2017) Investigations on the critical feed rate guaranteeing the effectiveness of rotary ultrasonic machining. Ultrasonics 74:81–88. https://doi.org/10.1016/j.ultras.2016.10.003

    Article  PubMed  Google Scholar 

  41. Wu J, Weilong Cong ZP, Williams RE (2009) Stochastic modeling and analysis of rotary ultrasonic machining. In: Proceedings ASME International Manufacturing Science and Engineering Conference, pp 1–10

  42. Zhang QH, Wu CL, Sun JL, Jia ZX (2000) The mechanism of material removal in ultrasonic drilling of engineering ceramics. Proc Inst Mech Eng Part B J Eng Manuf 214:805–810. https://doi.org/10.1243/0954405001517874

    Article  Google Scholar 

  43. Zhang C, Cong W, Feng P, Pei Z (2013) Rotary ultrasonic machining of optical K9 glass using compressed air as coolant: a feasibility study. Proc Inst Mech Eng Part B J Eng Manuf 228:504–514. https://doi.org/10.1177/0954405413506195

    Article  Google Scholar 

  44. Zheng SY, Xu XP (2011) A comparative study on ultrasonic machining of red granite. Solid State Phenom 175:150–156. https://doi.org/10.4028/www.scientific.net/SSP.175.150

    Article  CAS  Google Scholar 

  45. Pei ZJ, Prabhakar D, Ferreira PM, Haselkorn M (1995) A mechanistic approach to the prediction of material removal rates in rotary ultrasonic machining. J Eng Ind 117:142–151. https://doi.org/10.1115/1.2803288

    Article  Google Scholar 

  46. Komaraiah M, Narasimha Reddy P (1991) Rotary ultrasonic machining—a new cutting process and its performance. Int J Prod Res 29:2177–2187. https://doi.org/10.1080/00207549108948077

    Article  Google Scholar 

  47. Gu W, Yao Z, Li H (2011) Investigation of grinding modes in horizontal surface grinding of optical glass BK7. J Mater Process Technol 211:1629–1636. https://doi.org/10.1016/j.jmatprotec.2011.05.006

    Article  CAS  Google Scholar 

  48. Venkatesh VC, Izman S, Vichare PS et al (2005) The novel bondless wheel, spherical glass chips and a new method of aspheric generation. J Mater Process Technol 167:184–190. https://doi.org/10.1016/j.jmatprotec.2005.06.023

    Article  CAS  Google Scholar 

  49. Yao Z, Gu W, Li K (2012) Relationship between surface roughness and subsurface crack depth during grinding of optical glass BK7. J Mater Process Technol 212:969–976. https://doi.org/10.1016/j.jmatprotec.2011.12.007

    Article  CAS  Google Scholar 

  50. Arif M, Xinquan Z, Rahman M, Kumar S (2013) A predictive model of the critical undeformed chip thickness for ductile-brittle transition in nano-machining of brittle materials. Int J Mach Tools Manuf 64:114–122. https://doi.org/10.1016/j.ijmachtools.2012.08.005

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge National Institute of Technology, Kurukshetra, India for providing requisite facilities to accomplish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Singh, H. Rotary Ultrasonic Drilling of Silica Glass BK-7: Microstructural Investigation and Process Optimization Through TOPSIS. Silicon 11, 471–485 (2019). https://doi.org/10.1007/s12633-018-9933-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9933-x

Keywords

Navigation