Skip to main content
Log in

Analytical modeling of asymmetric hetero-dielectric engineered dual-material DG-TFET

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The present work aims to incorporate the benefits of asymmetric hetero-dielectric engineering into the already popular dual-material double-gate tunnel field-effect transistor. Here, Poisson’s equation in 2D, incorporating appropriate boundary conditions, is solved to obtain the surface potential variation along the channel while considering Young’s popular parabolic approximation technique. From the potential profile, the electric field is derived, and the drain current expression is then extracted analytically, integrating the band-to-band tunneling generation rate over the tunneling region using Kane’s model. The dependence of surface potential, electric field, and tunneling current on the device parameters is analyzed by varying the biasing voltages, gate oxide thickness, body thickness, and gate metal work function, demonstrating agreement with TCAD simulation results. The performance of the device is compared with the earlier-reported structure of the dual-material gate hetero-dielectric TFET on the basis of channel potential, electric field, and drain current. The proposed device exhibits higher ON-state current, better ON–OFF current ratio, and suppressed short-channel effects. The results also demonstrate the superiority of the graded dielectric over the single-dielectric and hetero-dielectric double-gate TFET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Arun Samuel, T.S., Balamurugan, N.B., Sibitha, S., Saranya, R., Vanisri, D.: Analytical modeling and simulation of dual material gate tunnel field effect transistors. J. Electr. Technol. 8, 742–747 (2013)

  2. Prabhat, V., Dutta, A.K.: Analytical surface potential and drain current models of dual-metal-gate double-gate tunnel-FETs. IEEE Trans. Electron Devices 63(5), 2190–2196 (2016)

    Article  Google Scholar 

  3. Deb, S., Singh, N.B., Islam, N., Sarkar, S.K.: Work function engineering with linearly graded binary metal alloy gate electrode for short-channel SOI MOSFET. IEEE Trans. Nanotechnol. 11(3), 472–478 (2012)

    Article  Google Scholar 

  4. Reddy, G.V., Jagadesh Kumar, M.: A new dual-material double-gate (DMDG) nanoscale SOI MOSFET-two-dimensional analytical modeling and simulation. IEEE Trans. Nanotechnol. 4(2), 260–268 (2005)

    Article  Google Scholar 

  5. Choi, W.Y., Park, B.G., Lee, J.D., Liu, T.J.K.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)

    Article  Google Scholar 

  6. Kumar, M.J., Vishnoi, R., Pandey, P.: Tunnel field effect transistors (TFET), modelling and simulation. Wiley. Lonescu AM, Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329 (2011)

  7. Wu, J., Min, J., Taur, Y.: Short-channel effects in tunnel FETs. IEEE Trans. Electron Devices 62(9), 3019–3024 (2015)

    Article  Google Scholar 

  8. Bagga, N., Sarkar, S.K.: An analytical model for tunnel barrier modulation in triple metal double gate TFET. IEEE Trans. Electron Devices 62(7), 2136–2142 (2015)

    Article  Google Scholar 

  9. Choi, W.Y., Lee, W.: Hetero-gate_dielectric tunneling field-effect transistors. IEEE Trans. Electron Devices 57(9), 2317–2319 (2010)

    Article  Google Scholar 

  10. Vishnoi, R., Kumar, M.J.: Compact analytical model of dual material gate tunneling field effect transistor using interband tunneling and channel transport. IEEE Trans. Electron Devices 61, 1936–1942 (2014)

    Article  Google Scholar 

  11. Wang, P., Zhuang, Y., Ii, C., Jiang, Z.: Analytical modeling for double-gate TFET with tri-material gate. In: ICSICT2014, Guilin, China (2014)

  12. Bagga, N., Dasgupta, S.: Surface potential and drain current analytical model of gate all around triple metal TFET. IEEE Trans. Electron Devices 64(2), 606–613 (2017)

    Article  Google Scholar 

  13. Upasana, N.R., Saxena M., Gupta, M.: Simulation study for dual material gate hetero-dielectric TFET: static performance analysis for analog applications. In: Annual IEEE India Conference (INDICON) (2013)

  14. Kwon, D.W., Park, B.G.: Tunnel field effect transistor with asymmetric gate dielectric and body thickness. Jpn. J. Appl. Phys. 56(4,3), 044201 (2017)

    Article  Google Scholar 

  15. Abdi, D.B., Jagadesh Kumar, M.: Controlling ambipolar current in tunneling FETs using overlapping gate-on-drain. J. Electron Devices Soc. 2(6), 187–190 (2014)

    Article  Google Scholar 

  16. Honma, T., Sasaki, I., Tamura, N., Tatami, J., Fujichika, S., Komeya, K., Meguro, T.: Fabrication of functionally graded SiO2-Mo material by centrifugation and Floc-casting of highly concentrated slurry. Int. J. Appl. Ceram. Technol. 10(2), 348–353 (2013)

    Article  Google Scholar 

  17. Choi, Y.-H., Bulliard, X., Benayad, A., Leterrier, Y., manson, J.-A.E., Lee, K.-H., Choi, D., Park, J.-J., Kim, J.: Design and fabrication of compositionally graded inorganic oxide thin films: mechanical, optical and permeation characteristics. Acta Mater. 58, 6495–6503 (2010)

  18. Giannatsis, J., Vassilakos, A., Canellidis, V., Dedoussis, V.: Fabrication of graded structures by extrusion 3D printing. In: Proceedings of the 2015 IEEE IEEM (2015)

  19. Kane, E.O.: Theory of tunneling. J. Appl. Phys. 32(1), 83–91 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  20. Young, K.K.: Short channel effects in fully depleted SOI MOSFETs. IEEE Trans. Electron Devices 36(2), 399–402 (1989)

    Article  Google Scholar 

  21. Upasana, N.R., Saxena, M., Gupta, M.: Modeling and TCAD assesment for gate material and gate dielectric engineered TFET architectures: circuit-level investigation for digital applications. IEEE Trans. Electron Devices 62(10), 3348–3356 (2015)

    Article  Google Scholar 

  22. Gholizadeh, M., Hosseini, S.E.: A 2-D analytical model for double-gate tunnel FETs. IEEE Trans. Electron Devices 61(5), 1494–1500 (2014)

    Article  Google Scholar 

  23. Saeidi, A., Biswas, A., Ionescu, A.M.: Modeling and simulation of low power ferroelectric non-volatile memory tunnel field effect transistors using silicon-doped hafnium oxide as gate dielectric. Solid State Electron. 124, 16–23 (2016)

    Article  Google Scholar 

  24. Kumar, S., Goel, E., Singh, K., Singh, B., Singh, P.K., Baral, K., Jit, S.: 2-D analytical modeling of the electrical characteristics of dual-material double-gate TFETs with a SiO2/HfO2 stacked gate-oxide structure. IEEE Trans. Electron Devices 64(3), 960–968 (2017)

    Article  Google Scholar 

  25. Jagadesh Kumar, M.: Two-dimensional analytical modeling of fully depleted DMG SOI MOSFET and evidence for diminished SCEs. IEEE Trans. Electron Devices 51(4), 569–574 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (Priyanka Saha) thankfully acknowledges the financial support as Ph.D. fellow under “Visvesvaraya Ph.D. Scheme”, Deit Y, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar Dash.

Appendix

Appendix

$$\begin{aligned} T_1= & {} \sqrt{d_1 }\cdot q\cdot A_1 \cdot E_g ^{D_1 -1} \end{aligned}$$
(A.1)
$$\begin{aligned} v_1= & {} M\left( {x_2 } \right) -M\left( {x_1 } \right) \end{aligned}$$
(A.2)
$$\begin{aligned} v_2= & {} N\left( {x_2 } \right) -N\left( {x_1 } \right) \end{aligned}$$
(A.3)
$$\begin{aligned} v_3= & {} P\left( {x_2 } \right) -P\left( {x_1 } \right) \end{aligned}$$
(A.4)
$$\begin{aligned} M\left( x \right)= & {} \frac{-x^{-D_1 }e^{-\theta x}}{\theta }\left( {x+\frac{1-D_1 }{\theta }} \right) \end{aligned}$$
(A.5)
$$\begin{aligned} N\left( x \right)= & {} \frac{-x^{1-D_1 }e^{-\theta x}}{\theta }\left( {x+\frac{2-D_1 }{\theta }} \right) \end{aligned}$$
(A.6)
$$\begin{aligned} P\left( x \right)= & {} \frac{-x^{2-D_1 }e^{-\theta x}}{\theta }\left( {x+\frac{3-D_1 }{\theta }} \right) \end{aligned}$$
(A.7)
$$\begin{aligned} \theta= & {} \frac{B_1 q}{E_g } \end{aligned}$$
(A.8)
$$\begin{aligned} m_1= & {} \frac{d_2 }{2d_1 } \end{aligned}$$
(A.9)
$$\begin{aligned} m_2= & {} \frac{d_3 }{2d_1 } \end{aligned}$$
(A.10)
$$\begin{aligned} m_3= & {} \frac{d_4 }{2d_1 } \end{aligned}$$
(A.11)
$$\begin{aligned} m_4= & {} \frac{d_5 }{2d_1 } \end{aligned}$$
(A.12)
$$\begin{aligned} m_5= & {} \frac{d_6 }{2d_1 } \end{aligned}$$
(A.13)
$$\begin{aligned} m_6= & {} \frac{d_7 }{2d_1 } \end{aligned}$$
(A.14)
$$\begin{aligned} m_7= & {} \frac{d_8 }{2d_1 } \end{aligned}$$
(A.15)
$$\begin{aligned} m_8= & {} \frac{d_9 }{2d_1 } \end{aligned}$$
(A.16)
$$\begin{aligned} d_1= & {} h_1 ^{2}+h_3 ^{2} \end{aligned}$$
(A.17)
$$\begin{aligned} d_2= & {} 2\left[ {h_1 h_2 +h_3 h_4 } \right] \end{aligned}$$
(A.18)
$$\begin{aligned} d_3= & {} 4h_7 \end{aligned}$$
(A.19)
$$\begin{aligned} d_4= & {} h_2 ^{2}+h_4 ^{2} \end{aligned}$$
(A.20)
$$\begin{aligned} d_5= & {} 4h^{2}_5 \end{aligned}$$
(A.21)
$$\begin{aligned} d_6= & {} 4h_8 \end{aligned}$$
(A.22)
$$\begin{aligned} d_7= & {} 4h_9 \end{aligned}$$
(A.23)
$$\begin{aligned} d_8= & {} 8h_5 h_6 \end{aligned}$$
(A.24)
$$\begin{aligned} d_9= & {} 4h_6 ^{2} \end{aligned}$$
(A.25)
$$\begin{aligned} h_1= & {} \lambda _1 \left( {c_2 -c_1 } \right) \end{aligned}$$
(A.26)
$$\begin{aligned} h_2= & {} \lambda _1 ^{2}\left( {c_1 +c_2 } \right) \end{aligned}$$
(A.27)
$$\begin{aligned} h_3= & {} \frac{\varepsilon _1 }{\varepsilon _\mathrm{Si}\cdot t_f }\left( {c_1 +c_2 +c_3 -V_{\mathrm{gs}_1 } } \right) \end{aligned}$$
(A.28)
$$\begin{aligned} h_4= & {} \frac{\varepsilon _1 \cdot \lambda _1 }{\varepsilon _\mathrm{Si}\cdot t_f }\left( {c_1 -c_2 } \right) \end{aligned}$$
(A.29)
$$\begin{aligned} k_1= & {} \frac{\left[ {\in _g +2\cdot \in _1 +\frac{\in _1 \cdot \in _g \cdot t_\mathrm{Si} }{\in _\mathrm{Si} \cdot t_f }} \right] }{4\cdot t_f \cdot t_\mathrm{Si} \cdot \in _\mathrm{Si} +\in _g\cdot t_\mathrm{Si} ^{2}} \end{aligned}$$
(A.30)
$$\begin{aligned} h_5= & {} k_1 \left( {V_{gs1} -c_1 -c_2 -c_3 } \right) \end{aligned}$$
(A.31)
$$\begin{aligned} h_6= & {} k_1 \lambda _1 \left( {c_2 -c_1 } \right) \end{aligned}$$
(A.32)
$$\begin{aligned} h_7= & {} h_3 \cdot h_5 \end{aligned}$$
(A.33)
$$\begin{aligned} h_8= & {} h_3 \cdot h_6 +h_4 \cdot h_5 \end{aligned}$$
(A.34)
$$\begin{aligned} h_9= & {} h_4 \cdot h_6 \end{aligned}$$
(A.35)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, D.K., Saha, P. & Sarkar, S.K. Analytical modeling of asymmetric hetero-dielectric engineered dual-material DG-TFET. J Comput Electron 17, 181–191 (2018). https://doi.org/10.1007/s10825-017-1102-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1102-8

Keywords

Navigation