Skip to main content
Log in

Structural and Dielectric Studies on Na2O-PbO-SiO2 Glasses

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Structural studies on x Na2O.(50-x)PbO.50SiO2 glasses have been carried out by different spectroscopic techniques. FTIR, EDX, NMR and dielectric spectroscopies are applied to follow the change in glass structure in terms of bridging oxygen (BO), non-bridging oxygen (NBO), and cluster species upon adding of Na2O at expense of PbO. NBOs are formed in the silicate network upon Na2O addition, since Na2O plays the role of glass modifier. Changes in relative area of Q2 (obtained from IR analysis) and NMR chemical shift of silicon nuclei with increasing Na2O are indicative for formation of the less shielded silicate units. While in sodium rich silicate glasses, the structural role of Na2O is changed due to changing Na coordination. FTIR analysis could be used to elucidate the changes related to changing the role of Na2O. The data obtained are correlated with that obtained from EDX spectroscopy. Moreover, the role of Na2O on the process of cluster formation when it substitutes PbO is determined. NBOs only are formed in the silicate network upon Na2O addition up to 30 mol%. On the other hand, in sodium rich silicate glasses an additional type of oxygen (free oxygen O2−) is present. The free oxygen is required for sodium to form aggregated cluster, specially at high concentration of Na2O (50 mol%). An increase in Na2O concentration in Na2O-rich silicate network results in increasing Na coordination instead of breaking more silicon–oxygen bonds. Scanning electron micrographs (SEM) and EDS spectroscopy in correlation with FTIR results confirm the presence of Na cluster species. The effect of clusters formation on AC conductivity was discussed according to jump relaxation model. Some parameters related to AC conductivity are found to be affected by the presence of cluster species in the glass network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warren BE, Biscoe J (1938) J Am Ceram Soc 21:287

    Article  Google Scholar 

  2. Nesbitt HW, Bancroft GM, Henderson GS, Ho R, Dalby KN, Huang Y, Yan Z (2011) J Non-Cryst Solids 357:170–180

    Article  CAS  Google Scholar 

  3. Greaves GN (1985) J Non-Cryst Solids 71:202

    Article  Google Scholar 

  4. Greaves GN, Fontaine A, Lagarde P, Raoux D, Gurman SJ (1981) Nature 293:611

    Article  CAS  Google Scholar 

  5. Meyer A, Horback J, Kob W, Kargl F, Schober H (2004) Phys Rev Lett 93:027801

    Article  CAS  Google Scholar 

  6. Nesbitt HW, Bancroft GM, Davidson R, McIntyre NS, Pratt AR (2004) Am Mineral 89:878

    Article  CAS  Google Scholar 

  7. Nesbitt HW, Dalby KN (2007) J Can Chem 85:782

    Article  CAS  Google Scholar 

  8. Brawer SA, Whiht WBJ (1975) Chem Phys 63:2421

    CAS  Google Scholar 

  9. Dupree R, Holland D, Williams DS (1986) J Non-Cryst Solids 81:185–200

    Article  CAS  Google Scholar 

  10. Zachariasen WH (1932) J Am Chem Soc 54:3841–3851

    Article  CAS  Google Scholar 

  11. Zielniok D, Cramer C, Eckert H (2007) Chem Mater 19(13):3162–3170

    Article  CAS  Google Scholar 

  12. Bastow TJ, Dirken PJ, Smith ME (1996) J Phys Chem 100(47):18539–18545

    Article  CAS  Google Scholar 

  13. Pant AK, Cruickshank DWJ (1968) Acta Crystallogr B24:13

    Article  Google Scholar 

  14. Nesbitt HW, Bancroft GM, Davidson R, McIntyre NS, Pratt AR (2004) Am Mineral 89:878

    Article  CAS  Google Scholar 

  15. Furukawa T, Brawer SA, White WB (1978) J Mater Sci 13:268

    Article  CAS  Google Scholar 

  16. Merzbacher CI, White WB (1991) J Non-Cryst Solids 130:18

    Article  CAS  Google Scholar 

  17. Husung RD, Doremus RH (1990) J Mater Res 5(10):2209

    Article  CAS  Google Scholar 

  18. Dunken H, Doremus RH (1987) J Non-Cryst Solids 92:61

    Article  CAS  Google Scholar 

  19. Martin SW (1989) Mater Chem Phys 23:225

    Article  CAS  Google Scholar 

  20. Brinkmann D (1992) Prog NMR Spectrosc 24:527

    Article  CAS  Google Scholar 

  21. Angell CA (1985) Solid State Ionics 18(/19):72

    Google Scholar 

  22. Puschel R. Diplomarbit, Munster

  23. Funke F (1992) Prog Solid State Chem 22:111–195

    Article  Google Scholar 

  24. Kloidt T (1992) Ph.D. Thesis, Münster Univ

  25. Schiraldi A (1978) Electrochim Acta 23:1039

    Article  CAS  Google Scholar 

  26. Wesolowski P, Jakubowski W, Nowinski JL (1989) Phys Stat Sol (A) 115:81

    Article  CAS  Google Scholar 

  27. Hill R, Dissado MLA (1988) Solid State Ionics 26:29

    Article  Google Scholar 

  28. Hill NE, Vaughan WE, Price AH, Davies M (1969) Dielectric properties and molecular behavior. Van Nostrand, London

    Google Scholar 

  29. Bishai AM, Ward AAM, Ghoneim AM, Younan AF (2003) Int J Polym Mater 2:31

    Article  Google Scholar 

  30. Corezzi S, Capaccioli S, Gallone Lucchesi GM, Rolla PA (1999) J Phys Condens Matter 11:10297–10314

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. El-Damrawi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Damrawi, G., Abd-El-Nour, K. & Ramadan, R.M. Structural and Dielectric Studies on Na2O-PbO-SiO2 Glasses. Silicon 11, 495–500 (2019). https://doi.org/10.1007/s12633-018-9863-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9863-7

Keywords

Navigation