Skip to main content
Log in

Structure of lead silicate glasses and its correlation with photoelastic properties

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Short-range structures of xPbO–(100 − x)SiO2 (x = 50, 60 and 65 mol%) glasses were studied by neutron diffraction and Reverse Monte Carlo modeling. Si–O atomic pair correlation distributions are symmetrical and show peaks in the range: 1.60–1.64 ± 0.02 Å. Si4+ are tetrahedrally co-ordinated with oxygen, whereas the Pb–O and O–O atomic pair correlation distributions are broad and asymmetrical due to the existence of wide range of Pb–O and O–O distances in the glass network. The peak positions in the Pb–O atomic pair correlations shift from 2.60 ± 0.05 to 2.42 ± 0.05 Å on increasing PbO concentration from 50 to 65 mol%. Pb2+ exist in PbOx (x = 3, 4, 5 and 6) structural units, and the average Pb–O coordination is constant and is in the range of 4.08 ± 0.11 to 4.14 ± 0.08. The O–Si–O bond angles distributions are broad and asymmetrical with peak values in the range of 91° to 109°, and deviate significantly from the value of 109.5° in the ideal tetrahedral structural units. The short-range structural properties of glasses i.e. the cation-oxygen coordination numbers and bond lengths were used to predict the photoelastic properties of the glasses by the Zwanziger model, and it is concluded that xPbO–(100 − x)SiO2 (x = 50, 60 and 65 mol%) glasses should exhibit the properties of zero-stress birefringence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D Mao and P J Bray J. Non-Cryst. Solids 144 217 (1992)

    Article  ADS  Google Scholar 

  2. A Saini et al. J. Non-Cryst. Solids 355 2323 (2009)

    Article  ADS  Google Scholar 

  3. B C Sales and L A Boatner J. Am. Ceram. Soc. 70 615 (1987)

    Article  Google Scholar 

  4. L Zhang and S Jahanshahi Metall. Mater. Trans. B 29 177 (1998)

    Article  Google Scholar 

  5. A M Zahra, C Zahra and B Piriou J. Non-Cryst. Solids 155 45 (1993)

    Article  ADS  Google Scholar 

  6. A Kaur, H Hirdesh, A Khanna, M Fábián, P S R Krishna and A B Shinde Mater. Res. Bull. 110 239 (2019)

    Article  Google Scholar 

  7. E M Rabinovich J. Mater. Sci. 11 925 (1976)

    Article  ADS  Google Scholar 

  8. M Silva, Y Messaddeq, S J L Ribeiro, M Poulain, F Villain and V Briois J. Phys. Chem. Solid 62 1055 (2001)

    Article  ADS  Google Scholar 

  9. A Kaur et al. Phase Transit. 86 759 (2013)

    Article  Google Scholar 

  10. S Fujino, C Hwang and K Morinaga J. Am. Ceram. Soc. 87 10 (2004)

    Article  Google Scholar 

  11. T Furukawa, S A Brawer and W B White J. Mater. Sci. 13 268 (1978)

    Article  ADS  Google Scholar 

  12. P W Wang and L Zhang J. Non-Cryst. Solids 194 129 (1996)

    Article  ADS  Google Scholar 

  13. A Rybicka, A Witkowska, G Bergmański, A Di Cicco, M Minicucci and G. Mancini J. Phys. Condens. Matter 13 9781 (2001)

    ADS  Google Scholar 

  14. A Witkowska, J Rybicki, S De Panfilis and A Di Cicco J. Non-Cryst. Solids 352 4351 (2006)

    Article  ADS  Google Scholar 

  15. J M Jewell and J A Ruller J. Non-Cryst. Solids 152 179 (1993)

    Article  ADS  Google Scholar 

  16. S Kohara et al. Phys. Rev. B 82 134209 (2010)

    Article  ADS  Google Scholar 

  17. [17] S Afyon, F Krumeich, C Mensing, A Borgschulte and R Nesper Sci. Rep. 4 7113 (2014)

    Article  ADS  Google Scholar 

  18. M Minakshi, N Sharma, D Ralph, D Appadoo and K Nallathamby Electrochem. Solid-State Lett. 14 A86 (2011)

    Article  Google Scholar 

  19. T Watcharatharapong, M M Sundaram, S Chakraborty, D Li, GM Shafiullah, R D Aughterson and R Ahuja ACS Appl. Mater. Interfaces 9 17977 (2017)

    Article  Google Scholar 

  20. H Jia et al. J. Non-Cryst. Solids 319 322 (2003)

    Article  ADS  Google Scholar 

  21. C Bettinali and G Ferraresso J. Non-Cryst. Solids 1 91 (1968)

    Article  ADS  Google Scholar 

  22. Y Watanabe and T Tsuchiya J. Non-Cryst. Solids 210 55 (1997)

    Article  ADS  Google Scholar 

  23. M Guignard and J Zwanziger J. Non-Cryst. Solids 353 1662 (2007)

    Article  ADS  Google Scholar 

  24. M Guignard, L Albrecht and J Zwanziger Chem. Mater. 19 286 (2007)

    Article  Google Scholar 

  25. A K Soper and P Egelstaff Nucl. Instrum. Methods 178 415 (1980)

    Article  ADS  Google Scholar 

  26. Y Waseda, The structure of non-crystalline materials: Liquids and amorphous solids. McGraw-Hill, New York (1980)

  27. N Ramesh Rao, P S R Krishna, S Basu, B A Dasannacharya, K S Sangunni, E S R Gopal, J. Non-Cryst. Solids 240 221 (1998)

    Google Scholar 

  28. T Egami and S J Billinge Underneath the Bragg Peaks: Structural Analysis of Complex Materials (Amsterdam: Elsevier) (2003)

    Book  Google Scholar 

  29. G Evrard and L Pusztai J. Phys. Condens. Matter 17 S1 (2005)

    Article  ADS  Google Scholar 

  30. O Gereben, P Jóvári, L Temleitner and L Pusztai J. Optoelectron. Adv. Mater. 9 3021 (2007)

    Google Scholar 

  31. A Belushkin, V Y Kazimirov and S Manoshin J. Non-Cryst. Solids 402 210 (2014)

    Article  ADS  Google Scholar 

  32. P Jóvári et al. J. Am. Ceram. Soc. 98 1034 (2015)

    Article  Google Scholar 

  33. M Fábián and C Araczki Physica Scripta 91 054004 (2016)

    Article  ADS  Google Scholar 

  34. M Fabian, E Svab and K Krezhov J. Non-Cryst. Solids 433 6 (2016)

    Article  ADS  Google Scholar 

  35. P Jóvári et al. J. Non-Cryst. Solids 459 99(2017)

    Article  ADS  Google Scholar 

  36. A Shikerkar, J A E Desa, P S R Krishna and R Chitra J. Non-Cryst. Solids 270 234 (2000)

    Article  ADS  Google Scholar 

  37. H E Fischer, A C Barnes and P S Salmon Rep. Prog. Phys. 69 233 (2005)

    Article  ADS  Google Scholar 

  38. I Kaban, P Jóvári, W Hoyer and E Welter J. Non-Cryst. Solids 353 2474 (2007)

    Article  ADS  Google Scholar 

  39. J Dawidowski, J R Granada, J R Santisteban, F Cantargi and L A R Palomino Experimental Methods in the Physical Sciences (Amsterdam: Elsevier) 471 (2013)

    Google Scholar 

  40. D L Price and F Fernandez-Alonso Neutron Scattering-Magnetic and Quantum Phenomena (Amsterdam: Elsevier) (2015)

    Google Scholar 

  41. L Hennet, D H Moritz, R Weber and A Meyer Experimental Methods in the Physical Sciences (Amsterdam: Elsevier) 583 (2017)

    Google Scholar 

  42. V Petkov and G Yunchov J. Phys. Condens. Matter 8 1869 (1996)

    Article  ADS  Google Scholar 

  43. M Fábián, E Sváb, T Proffen and E Veress J. Non-Cryst. Solids 354 3299 (2008)

    Article  ADS  Google Scholar 

  44. M Fábián, E Sváb, T Proffen and E Veress J. Non-Cryst. Solids 356 441 (2010)

    Article  ADS  Google Scholar 

  45. M Eckersley, P Gaskell, A Barnes and P Chieux J. Non-Cryst. Solids 106 132 (1988)

    Article  ADS  Google Scholar 

  46. E Lorch J. Phys. C: Solid State Phys. 2 229 (1969)

    Article  ADS  Google Scholar 

  47. A K Soper and E R Barney J. Appl. Crystallogr. 45 1314 (2012)

    Article  Google Scholar 

  48. S R Elliott Nature 354 445 (1991)

    Article  ADS  Google Scholar 

  49. I Gee, D Holland and C McConville Phys. Chem. Glasses 42 339 (2001)

    Google Scholar 

  50. T Takaishi, M Takahashi, J Jin, T Uchino and T Yoko J. Am. Ceram. Soc. 88 1591 (2005)

    Article  Google Scholar 

  51. O L Alderman et al. Phys. Chem. Chem. Phys. 15 8506 (2013)

    Article  Google Scholar 

  52. I Vainshtein, A Zatsepin, V Kortov and Y V Shchapov Phys. Solid State 42 230 (2000)

    Article  ADS  Google Scholar 

  53. A Kaur, A Khanna and M Fábián Mater. Res. Express 5 065203 (2018)

    Article  ADS  Google Scholar 

  54. T K Bechgaard et al. Opt. Mater. 67 155 (2017)

    Article  ADS  Google Scholar 

  55. M M Smedskjaer, M Potuzak, X Guo and J C Mauro Opt. Mater. 35 2435 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Atul Khanna thanks UGC-DAE-Consortium for Scientific Research Indore and Mumbai Centers, and the Department of Science and Technology, New Delhi, India for research Grants that supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Khanna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanna, A., Kaur, A., Fábián, M. et al. Structure of lead silicate glasses and its correlation with photoelastic properties. Indian J Phys 95, 2187–2199 (2021). https://doi.org/10.1007/s12648-020-01870-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01870-9

Keywords

Navigation