Skip to main content

Advertisement

Log in

The Physiochemical Properties of Dental Resin Composites Reinforced with Milled E-glass Fibers

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Purpose

The milled E-glass fibers (consist of 54.4 wt% SiO2, 14.5 wt% Al2O3, 17 wt% CaO, 4.5 wt% MgO, 8.5 wt% B2O3, 0.5 wt% Na2O) with 20 mesh and 50 mesh sizes were used to replace particle fillers in dental resin composites partially, with the aim to enhance fracture toughness of dental resin composites.

Methods

The length distribution of milled E-glass fibers with different size was investigated with a polarizing microscope. The FT-IR analysis was used to determine the double bond conversion (DC) of dental resin composites. Water sorption (WS) and solubility (SL) were obtained until the mass variation of dental resin composites in distilled water kept stable. Flexural strength (FS) and modulus (FM) of dental resin composites were measured using a three-point bending set up. Fracture toughness (FT) of dental resin composites was measured according to the single-edge notched beam method.

Results

For both 20 mesh and 50 mesh milled fibers, the main aspect ratio was less than 5.2, which was considered to be the lowest aspect ratio for dental resin composites. The milled E-glass fibers showed none negative effect on DC, WS, and SL, and even some fibers containing dental resin composites had higher DC, lower WS and SL. The milled E-glass fibers could improve FM and FT of dental resin composites, but had no enhancement effect on FS.

Conclusion

The milled E-glass fibers could be used to enhance FT of dental resin composites without influencing some other physiochemical properties negatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen MH (2010) Update on dental nanocomposites. J Dent Res 89:549–560

    Article  CAS  PubMed  Google Scholar 

  2. Lassila L, Garoushi S, Vallittu PK, Säilynoja E (2016) Mechanical properties of fiber reinforced restorative composite with two distinguished fiber length distribution. J Mech Beh Biomed Mater 60:331–338

    Article  CAS  Google Scholar 

  3. Van Dijken JW, Lindberg A (2015) A 15-year randomized controlled study of a reduced shrinkage stress resin composite. Dent Mater 31:1150–1158

    Article  CAS  PubMed  Google Scholar 

  4. Bocalon ACE, Mita D, Narumyia I, Shouha P, Xavier TA, Braga RB (2016) Replacement of glass particles by multidirectional short glass fibers in experimental composites: Effects on degree of conversion, mechanical properties and polymerization shrinkage. Dent Mater 32:e204–e210

    Article  CAS  PubMed  Google Scholar 

  5. Beigi S, Yeganeh H, Atai M (2013) Evaluation of fracture toughness and mechanical properties of ternary thiol-ene-methacrylate systems as resin matrix for dental restorative composites. Dent Mater 29:777–787

    Article  CAS  PubMed  Google Scholar 

  6. Bacchi A, Nelson M, Pfeifer CS (2016) Characterization of methacrylated-based composites containing thio-urethane oligomers. Dent Mater 32:233–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bacchi A, Pefeifer CS (2016) Rheological and mechanical properties and interfacial stress development of composite cements modified with thiol-urethane oligomers. Dent Mater 32:978–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ornaghi BP, Meier MM, Lohbauer UL, Braga RR (2014) Fracture toughness and cyclic fatigue resistance of resin composites with different filler size distribution. Dent Mater 30:742–751

    Article  CAS  PubMed  Google Scholar 

  9. Bahramian N, Atai M, Naimi-Jamal MR (2015) Ultra-high-molecular-weight polyethylene fiber reinforced dental composites: Effect of fiber surface treatment on mechanical properties of the composites. Dent Mater 31:1022–1029

    Article  CAS  PubMed  Google Scholar 

  10. Vidotti HA, Manso AP, Leung V, do Valle AL, Ko F, Carvalho RM (2015) Flexural properties of experimental nanofiber reinforced composite are affected by resin composition and nanofiber/resin ratio. Dent Mater 31:1132–1141

    Article  CAS  PubMed  Google Scholar 

  11. Wang T, Tsoi JKH, Matinlinna JP (2016) A novel zirconia fiber-reinforced resin composite for dental use. J Mech Beh Biomed Mater 53:151–160

    Article  CAS  Google Scholar 

  12. Bijelic-Donova J, Garoushi S, Lassila LVJ, Keulemans F, Vallittu PK (2016) Mechanical and structure characterization of discontinuous fiber-reinforced dental resin composite. J Dent 52:70–78

    Article  CAS  PubMed  Google Scholar 

  13. Vallittu PK (1996) A review of fiber-reinforced denture based resins. J Prosthodont 5:270–276

    Article  CAS  PubMed  Google Scholar 

  14. Zhang M, Matinlinna JP (2012) E-glass fiber reinforced composites in dental applications. Silicon 4:73–78

    Article  CAS  Google Scholar 

  15. Vallittu PK (2015) High-aspect ratio fillers: fiber-reinforced composites and their anisotropic properties. Dent Mater 31:1–7

    Article  CAS  PubMed  Google Scholar 

  16. Krause WR, Park SH, Straup RA (1989) Mechanical properties of BIS-GMA resin short glass fiber composites. J Biomed Mater Res 23:1195–1211

    Article  CAS  PubMed  Google Scholar 

  17. Choi KK, Ferracane JL, Hilton TJ, Chariton D (2000) Properties of packable dental composites. J Esthet Restor Dent 12:216–226

    Article  CAS  Google Scholar 

  18. Knobloch LA, Kerby RE, Seghi R, Berlin JS, Clelland N (2002) Fracture toughness of packable conversional composite materials. J Prosthetic Dent 88:307–313

    Article  CAS  Google Scholar 

  19. Petersen RC (2005) Discontinuous fiber-reinforced composites above critical length. J Dent Res 84:365–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang Q, Garoushi S, Lin Z, He J, Qin W, Liu F, Vallittu PK, Lassila LVJ (2017) Properties of discontinuous S2-glass fiber-particulate-reinforced resin composites with two different fiber length distributions. J Prosthodont Res. https://doi.org/10.1016/j.jpor.2017.03.002

  21. Garoushi S, Hatem M, Lassila L, Vallittu PK (2015) The effect of short fiber composite based on microleakage and load bearing capacity of posterior restorations. Acta Biomater Odontol Scand 1:6–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moon DY, Sim J, Oh HS, Benmokrane B (2008) An exploratory study of GFRP rebar with ribs containing milled glass fibers. Compos Part B: Eng 39:882–890

    Article  CAS  Google Scholar 

  23. Mateen A, Siddiqi SA (1996) Effect of moisture on hammer-milled glass-fiber-reinforced polyurethane. J Mater Eng Perform 5:598–660

    Article  CAS  Google Scholar 

  24. Davim JP, Reis P, António C C (2004) A study on milling of glass fiber reinforced plastics manufactured by hand-lay up using statistical analysis (ANOVA). Compos Struct 64:493– 500

    Article  Google Scholar 

  25. Velasco JI, Arencón D, Sánchez-Soto M, Gordillo A, Maspoch ML (2003) Milled glass fiber filled-poly(ethylene terephthalate-co-isophthalate) composites-thermal and mechanical properties. J Thermoplast Compos Mater 16:365–380

    Article  CAS  Google Scholar 

  26. Gürbüz Ö, Ünalan F, Kursoglu P (2005) In vitro wear of denture teeth acrylic resin milled glass fiber composite. OHDMBSC 4:15–20

    Google Scholar 

  27. Liu D, Liu F, He J, Lassila LVJ, Vallittu PK (2013) Synthesis of a novel tertiary amine containing urethane dimethacrylate monomer (UDMTA) and its application in dental resin. J Mater Sci Mater Med 24(5):1595–603

    Article  CAS  PubMed  Google Scholar 

  28. He J, Vallittu PK, Lassila LVJ (2017) Preparation and characterization of high radio-opaque E-glass fiber-reinforced composite with iodine containing methacrylate monomers. Dent Mater 33:218–225

    Article  CAS  PubMed  Google Scholar 

  29. Uctasli S, Tezvergil A, Lassila LVJ, Vallittu PK (2005) The degree of conversion of fiber-reinforced composites polymerized using different light-curing sources. Dent Mater 21:469–475

    Article  CAS  PubMed  Google Scholar 

  30. Lassila LVJ, Nohrström T, Vallittu PK (2002) The influence of short-term water storage on the flexural properties of unidirectional glass fiber-reinforced composites. Biomaterials 23:2221–2229

    Article  CAS  PubMed  Google Scholar 

  31. Karabela MM, Sideridou ID (2011) Synthesis and study of properties of dental resin composites with different nanosilica particles size. Dent Mater 27:825–835

    Article  CAS  PubMed  Google Scholar 

  32. Khan AS, Azam MT, Khan M, Mian SA, Rehman IU (2015) An update on glass fiber dental restorative composites: A systematic review. Mater Sci Eng C 47:26–39

    Article  CAS  Google Scholar 

  33. Garoushi S, Säilynoia E, Vallittu PK, Lassila LVJ (2013) Physical properties and depth of cure of a new short fiber reinforced composite. Dent Mater 29:835–841

    Article  CAS  PubMed  Google Scholar 

  34. Garoushi S, Vallittu PK, Watts DC, Lassila LVJ (2008) Polymerization shrinkage of experimental short glass fiber-reinforced composite with semi-inter penetrating polymer network matrix. Dent Mater 24:211–215

    Article  CAS  PubMed  Google Scholar 

  35. Ghasemzadehbarvarz M, Duchesne C, Rodrigue D (2015) Mechanical, water absorption, and aging properties of polypropylene/flax/glass fiber hybrid composites. J Compos Mater 49:3781–3798

    Article  CAS  Google Scholar 

  36. Shouha P, Swain M, Ellakwa A (2014) The effect of fiber aspect ratio and volume loading on flexural properties of flowable dental composite. Dent Mater 30:1234–1244

    Article  CAS  PubMed  Google Scholar 

  37. Akiike S, Nose H, Hirota Y, Tawada Y, Komatsu S (2008) Comparison of three testing methods of fracture toughness using indirect composite. Nihon Hotetsu Shika Gakkai Zasshi 52:49–58

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Guangdong Province, China (2015A030310338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwei He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Tang, C., Liu, F. et al. The Physiochemical Properties of Dental Resin Composites Reinforced with Milled E-glass Fibers. Silicon 10, 1999–2007 (2018). https://doi.org/10.1007/s12633-017-9713-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-017-9713-z

Keywords

Navigation