Skip to main content
Log in

Naked Eye Detection of Cr3+ and Ni2+ Ions by Gold Nanoparticles Modified with Ribavirin

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper reports the synthesis of ribavirin-modified gold nanoparticles (ribavirin-AuNPs) in aqueous media, characterized by FTIR spectroscopy, ultraviolet–visible spectroscopy (UV–vis), and transmission electron microscopy (TEM). Ribavirin-AuNPs were employed as colorimetric probes to detect Cr3+ and Ni2+ in the pH range of 3–8 and 25 C in aqueous solutions by the color change of the system. In the solution, ribavirin-AuNPs were red in color and the surface plasmon absorption band was centered at 530 nm. In the presence of Cr3+ and Ni2+, ribavirin-AuNPs induced the aggregation of nanoparticles, and the surface plasmon absorption changed to 540 nm. Upon aggregation, the surface plasmon absorption band red-shifted and, thus, the nanoparticle solution appeared blue. The sensitivity of ribavirin-AuNPs toward other metal ions, i.e. Mg2+, Mn2+, Cr6+, Na+, Ni2+, Ag+, Al3+, Ca2+, Cd2+, K+, Cd2+, Cu2+, Fe2+, Fe3+, Hg2+, Co3+, Ni2+, Pb2+, and Zn2+, was negligible. This highly selective sensor allowed for the direct quantitative assay of Ni2+ and Cr3+. The limits of detections were found to be 25.2 and 30.5 nM for Ni2+ and Cr3+ on the basis of the signal-to-noise ratio of 3:1 and correlation coefficients (R2) of 0.9813 and 0.99489 for Ni2+ and Cr3+, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li L, Cao R, Wang Z, Li J, Qi L (2009) Template synthesis of hierarchical Bi2E3 (E= S, Se, Te) core- shell microspheres and their electrochemical and photoresponsive properties. J Phys Chem Lett 113(42):18075–18081

    Article  CAS  Google Scholar 

  2. Guo Y, Wang Z, Qu W, Shao H, Jiang X (2011) Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. Biosens Bioelectron 26(10):4064–4069

    Article  CAS  PubMed  Google Scholar 

  3. Schwarz FJ, Kirchgessner M, Stangl GI (2000) Cobalt requirement of beef cattle—feed intake and growth at different levels of cobalt supply. J Anim Physiol Anim Nutr 83(3):121–131. https://doi.org/10.1046/j.1439-0396.2000.00258.x

    Article  CAS  Google Scholar 

  4. Vasylkiv OY, Kubrak OI, Storey KB, Lushchak VI (2010) Cytotoxicity of chromium ions may be connected with induction of oxidative stress. Chemosphere 80(9):1044–1049

    Article  CAS  PubMed  Google Scholar 

  5. Lushchak V, Kubrak OI, Lozinsky OV, Storey JM, Storey KB, Lushchak VI (2009) Chromium (III) induces oxidative stress in goldfish liver and kidney. Aquat Toxicol 93(1):45–52

    Article  CAS  PubMed  Google Scholar 

  6. Li H, Cui Z, Han C (2009) Glutathione-stabilized silver nanoparticles as colorimetric sensor for Ni 2 + ion. Sensors Actuators B Chem 143(1):87–92

    Article  CAS  Google Scholar 

  7. Gupta VK, Prasad R, Kumar A (2002) Dibenzocyclamnickel (II) as ionophore in PVC-matrix for Ni2 + -selective sensor. Sensors 2(10):384–396

    Article  CAS  Google Scholar 

  8. Maisonneuve S, Fang Q, Xie J (2008) Benzothiadiazoyl-triazoyl cyclodextrin: a selective fluoroionophore for Ni (II). Tetrahedron 64(37):8716–8720

    Article  CAS  Google Scholar 

  9. Milne A, Landing W, Bizimis M, Morton P (2010) Determination of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb in seawater using high resolution magnetic sector inductively coupled mass spectrometry (HR-ICP-MS). Anal Chim Acta 665(2):200–207

    Article  CAS  PubMed  Google Scholar 

  10. Alizadeh A, Khodaei M, Karami C, Workentin M, Shamsipur M, Sadeghi M (2010) Rapid and selective lead (II) colorimetric sensor based on azacrown ether-functionalized gold nanoparticles. Nanotechnology 21 (31):315503

    Article  CAS  PubMed  Google Scholar 

  11. Sadeghi S, Karami C (2010) Selective Iron (II) colorimetric sensor based on hydroxamic acid-functionalized gold nanoparticles. Iran J Org Chem 2(3):465–472

    Google Scholar 

  12. Karami C, Alizadeh A, Taher MA, Hamidi Z, Bahrami B (2016) Uv-Visible spectroscopy detection of iron(III) ion on modified gold nanoparticles with a hydroxamic acid. J Appl Spectrosc 83(4):687–693

    Article  CAS  Google Scholar 

  13. Karami C, Mehr SY, Deymehkar E, Taher MA (2017) Naked eye detection of Cr3 + and Co2 + ions by gold nanoparticle modified with azomethine. Plasmonics. https://doi.org/10.1007/s11468-017-0541-1

  14. Karami C, Taher MA (2017) Colorimetric sensor of cobalt ions in aqueous solution using gold nanoparticles modified with glycyrrhizic acid. Plasmonics. https://doi.org/10.1007/s11468-017-0635-9

  15. Rawat KA, Kailasa SK (2014) Visual detection of arginine, histidine and lysine using quercetin-functionalized gold nanoparticles. Microchimica Acta 181(15–16):1917–1929

    Article  CAS  Google Scholar 

  16. Chen Z, Zhang C, Zhou T, Ma H (2015) Gold nanoparticle based colorimetric probe for dopamine detection based on the interaction between dopamine and melamine. Microchim Acta 182(5–6):1003–1008

    Article  CAS  Google Scholar 

  17. Devasenathipathy R, Karuppiah C, Chen S-M, Mani V, Vasantha VS, Ramaraj S (2015) Highly selective determination of cysteine using a composite prepared from multiwalled carbon nanotubes and gold nanoparticles stabilized with calcium crosslinked pectin. Microchim Acta 182(3–4):727–735

    Article  CAS  Google Scholar 

  18. He Y, Zhang X, Yu H (2015) Gold nanoparticles-based colorimetric and visual creatinine assay. Microchim Acta 182(11–12):2037–2043

    Article  CAS  Google Scholar 

  19. Liu J, Zhang X, Xiao C, Yang A, Zhao H, He Y, Li X, Yuan Z (2015) Colorimetric and visual determination of dicyandiamide using gallic acid-capped gold nanoparticles. Microchim Acta 182(1–2):435–441

    Article  CAS  Google Scholar 

  20. Liu W, Zhang D, Zhu W, Zhang S, Wang Y, Yu S, Liu T, Zhang X, Zhang W, Wang J (2015) Colorimetric and visual determination of total nereistoxin-related insecticides by exploiting a nereistoxin-driven aggregation of gold nanoparticles. Microchim Acta 182(1–2):401–408

    Article  CAS  Google Scholar 

  21. Maity D, Bhatt M, Paul P (2015) Calix [4] arene functionalized gold nanoparticles for colorimetric and bare-eye detection of iodide in aqueous media and periodate aided enhancement in sensitivity. Microchimica Acta 182(1–2):377–384

    Article  CAS  Google Scholar 

  22. Pu W, Zhao H, Wu L, Zhao X (2015) A colorimetric method for the determination of xanthine based on the aggregation of gold nanoparticles. Microchim Acta 182(1–2):395–400

    Article  CAS  Google Scholar 

  23. Xiao C, Liu J, Yang A, Zhao H, He Y, Li X, Yuan Z (2015) Colorimetric determination of neomycin using melamine modified gold nanoparticles. Microchim Acta 182(7–8):1501–1507

    Article  CAS  Google Scholar 

  24. Xu J, Li Y, Bie J, Jiang W, Guo J, Luo Y, Shen F, Sun C (2015) Colorimetric method for determination of bisphenol A based on aptamer-mediated aggregation of positively charged gold nanoparticles. Microchimica Acta 182(13-14):2131–2138

    Article  CAS  Google Scholar 

  25. Zhang Y, Li R, Xue Q, Li H, Liu J (2015) Colorimetric determination of copper (II) using a polyamine-functionalized gold nanoparticle probe. Microchimica Acta 182(9-10):1677–1683

    Article  CAS  Google Scholar 

  26. Chen Z, Hu Y, Yang Q, Wan C, Tan Y, Ma H (2015) A highly sensitive colorimetric sensor for adrenaline detection based on organic molecules-functionalized gold nanoparticles. Sens Actuators B Chem 207:277–280

    Article  CAS  Google Scholar 

  27. Alizadeh A, Khodaei M, Karami C, Workentin M, Shamsipur M, Sadeghi M (2010) Rapid and selective lead (II) colorimetric sensor based on azacrown ether-functionalized gold nanoparticles. Nanotechnology 21:315503

    Article  CAS  PubMed  Google Scholar 

  28. Haghnazari N, Alizadeh A, Karami C, Hamidi Z (2013) Simple optical determination of silver ion in aqueous solutions using benzo crown-ether modified gold nanoparticles. Microchim Acta 180(3–4):287–294

    Article  CAS  Google Scholar 

  29. Maity D, Gupta R, Gunupuru R, Srivastava DN, Paul P (2014) Calix [4] arene functionalized gold nanoparticles: Application in colorimetric and electrochemical sensing of cobalt ion in organic and aqueous medium. Sensors Actuators B Chem 191:757–764

    Article  CAS  Google Scholar 

  30. Zhang X, Sun Z, Cui Z, Li H (2014) Ionic liquid functionalized gold nanoparticles: Synthesis, rapid colorimetric detection of imidacloprid. Sensors Actuators B Chem 191:313–319

    Article  CAS  Google Scholar 

  31. Darbha GK, Singh AK, Rai US, Yu E, Yu H, Chandra Ray P (2008) Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. J Am Chem Soc 130(25):8038–8043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dang Y-Q, Li H-W, Wang B, Li L, Wu Y (2009) Selective detection of trace Cr3 + in aqueous solution by using 5, 5’-dithiobis (2-nitrobenzoic acid)-modified gold nanoparticles. ACS Appl Mater Interfaces 1(7):1533–1538

    Article  CAS  PubMed  Google Scholar 

  33. Xin J, Miao L, Chen S, Wu A (2012) Colorimetric detection of Cr 3 + using tripolyphosphate modified gold nanoparticles in aqueous solutions. Anal Methods 4(5):1259–1264

    Article  CAS  Google Scholar 

  34. Zhang M, Liu Y-Q, Ye B-C (2012) Colorimetric assay for parallel detection of Cd 2 + , Ni 2 + and Co 2 + using peptide-modified gold nanoparticles. Analyst 137(3):601–607

    Article  CAS  PubMed  Google Scholar 

  35. Zhao L, Jin Y, Yan Z, Liu Y, Zhu H (2012) Novel, highly selective detection of Cr (III) in aqueous solution based on a gold nanoparticles colorimetric assay and its application for determining Cr (VI). Anal Chim Acta 731:75–81

    Article  CAS  PubMed  Google Scholar 

  36. Chen Y-C, Lee I-L, Sung Y-M, Wu S-P (2013) Triazole functionalized gold nanoparticles for colorimetric Cr 3 + sensing. Sensors Actuators B Chem 188:354–359

    Article  CAS  Google Scholar 

  37. Annadhasan M, Kasthuri J, Rajendiran N (2015) Green synthesis of gold nanoparticles under sunlight irradiation and their colorimetric detection of Ni 2 + and Co 2 + ions. RSC Adv 5(15):11458–11468

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Salimi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 787 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salimi, F., Zarei, K. & Karami, C. Naked Eye Detection of Cr3+ and Ni2+ Ions by Gold Nanoparticles Modified with Ribavirin. Silicon 10, 1755–1761 (2018). https://doi.org/10.1007/s12633-017-9665-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-017-9665-3

Keywords

Navigation