Skip to main content
Log in

Bacterial Weathering of Asbestos

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The process of bioweathering involving natural microbes, natural plants and transgenic animals has proven to be a very efficient and effective tool for detoxifying xenobiotics. The present investigation uses the same tool as a device for detoxifying asbestos, a potent carcinogenic entity. The cellular mechanism of asbestos toxicity to a certain extent, as shown by research, is attributed to its chemical composition particularly the presence of iron in its structure. Many bacteria release iron chelating compounds, siderophores, which could be instrumental in the study. Treatment of asbestos was carried out under specific parameters with bacterial isolates native to the mines of Rajasthan from which asbestos was collected. An assessment was then done to evaluate reduction in iron content of the asbestos fibres by Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX). A remarkable decrease was observed in the iron content of asbestos following treatment with most of the bacterial isolates used, which probably could form the basis for asbestos bioweathering studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Daghino S, Martino E, Tomatis M, Fenogiio I, Perotto S, Fubini B (2005) Inorganic materials and living organisms: surface modifications and fungal responses to various asbestos forms. Chem Euro J 11:5611–5618

    Article  CAS  Google Scholar 

  2. Toyokuni S (2009) Mechanism of asbestos induced carcinogenesis. Nagoya J Med Sci 71:1–10

    CAS  Google Scholar 

  3. Dusinska M, Collins A, Kazimirova A, Barancokova M, Harrington V (2004) Genotoxic effects of asbestos in humans. Mutation Resour 553(1-2):91–102

    Article  CAS  Google Scholar 

  4. Daghino S, Turcim F, Tomatis M, Favier A , Perotto S, Douki T, Fubini B (2006) Soil fungi reduce the iron content and DNA damaging effects of asbestos fibres. Environ Sci Technol 40(18):5793–5798

    Article  CAS  Google Scholar 

  5. Kubo Y, Takenaka Hiroyuki, Nagai Hirotaka, Toyokuni Shinaya (2012) Distinct affinity of nuclear proteins to the surface of chrysotile and crocidolite. J Clin Biochem Nutr 51(3):221–226

    CAS  Google Scholar 

  6. Bergamini C, Fato R, Biagini G, Pugnaloni A, Giantomassi F, Foresti E, Lesci GI, Roveri N, Lenaz G (2007) Mitochondrial changes induced by natural and synthetic asbestos fibers: Studies on isolated mitochondria. Cell Mol Bio 52:905–913

    Google Scholar 

  7. Kilburn KH (2000) Indoor air effects after building renovation and in manufactured homes. Am J Med Sci 320(4):249–54

    Article  CAS  Google Scholar 

  8. Mapelli F, Marasco R, Balloi A, Rolli E, Cappitelli F, Daffonchio D, Borin S (2012) Mineral–microbe interactions: Biotechnological potential of bioweathering. J Biotechnol 157(4):473–481

    Article  CAS  Google Scholar 

  9. Daghino S, Martino E, Vurro E, Tomatis M, Girlanda M, Fubini B, Perotto S (2008) Bioweathering of chrysotile by fungi isolated in ophiolitic sites. FEMS Microbiology Letters 285:242–249

    Article  CAS  Google Scholar 

  10. Prandi L, Tomatis M, Penazzi N, Fubini B (2002) Iron cycling mechanisms and related modifications at the asbestos surface. Ann Occup Hyg 46:140–143

    Article  Google Scholar 

  11. Martino E, Prandi L, Fenoglio I, Bonfante P, Perotto S, Fubini B (2003) Soil fungal hyphae bind and attack asbestos fibers. Angew Chem Int Ed 42:219–222

    Article  CAS  Google Scholar 

  12. Martino E, Carminara S, Prandi L, Fubini B, Perotto S (2004) Physical and biochemical interactions of soil fungi with asbestos fibres. Environ Toxicol Chem 23:938–944

    Article  CAS  Google Scholar 

  13. Favero-Longo S, Turci F, Tomatis M, Piervittori (2005) Chrysotile asbestos is progressively converted into a nonfibrous amorphous material by the chelating action of lichen metabolites. J Env Monit 7:764–766

    Article  CAS  Google Scholar 

  14. Favero-Longo SE, Girlanda M, Honegger R, Fubini B, Piervittori R (2007) Interactions of sterile-cultured lichen-forming ascomycetes with asbestos fibres. Mycol Res 2007 111(Pt 4):473–81

    Google Scholar 

  15. Crawford RH, Floyd M, Li CY (2000) Degradation of serpentine and muscovite rock minerals and immobilization of cations by soil Penicillium species. Phyton Horn Austria 40(2):315–322

    CAS  Google Scholar 

  16. Faver-Longo S, Siniscalco C, Piervittori (2006) Plant and Lichen colonization in an asbestos mine: Spontaneous bioattenuation limits air dispersion of fibres. Plant Biosystems 14(92):190–205

    Article  Google Scholar 

  17. Iman AF, Hussain Dr, Ma’an A (2011) Kinetic study of a bacterial consortium isolated from soil contaminated with crude oil. Australian J. Basic App. Sci 5(6):925–930

    Google Scholar 

  18. Zang Shu-ying, Wang Quingfeng (2011) Changes in bacterial community of authracene bioremediating, composting soil. J Zhejiang Univ Sci 12(9):760–768

    Article  Google Scholar 

  19. Nyakundi WO, Magema G (2011) Biodegradation of diazinon and methomyl pesticide by white rot fungi. J. of App Tech Env Sanitation 1(20):107–124

    CAS  Google Scholar 

  20. Neilands JB (1995) Siderophores:-Sructure and Function of microbial iron transport compounds. J Biol Chem 270:26723–26

    Article  CAS  Google Scholar 

  21. Chu BC, GraciaHerrero A, Johanson TH, Krewulak KD, Lau CK, Peacock RS, Slavinskaya Z, Vogel HJ (2010). Biometals 23(4):601–11

    Article  CAS  Google Scholar 

  22. Kirchman DL (2012) Processes in Microbial Ecology: Microbial growth, biomass production and controls, 108; Oxford Univ. Press Inc., New York

    Google Scholar 

  23. Waksman SA (1927) Principles of soil microbiology, 12-13, Baltimore. Williams and Wilkins Co., London

    Google Scholar 

  24. Warcup JH (1950) The soil plate method for isolation of fungi from soil, Nature, Lord 166:117–118

  25. Bergey’s (1974) Manual of Determinative Bacteriology (1923-57) Seven editions, lst, 1923; 2nd, 1926; 3rd, 1930; 4th, 1934; 5th, 1939; 6th, 1949; 7th, 1957; 8th. Williams and Wilkins Company, Baltimore

    Google Scholar 

  26. Lapage S, Shelton J, Mitchell T (1970). In: Norris J, Ribbons D (eds) Methods Microbiol. 3A Academic Press, London

  27. Faddin MJ (1985) Media for Isolation-Cultivation-Identification-Maintenance of Medical Bacteria, Vol. l. Williams and Wilkins, Baltimore

    Google Scholar 

  28. Kuczumow A (2011) Estimation of asbestos release from building materials to the air in South Eastern Poland. Proceedings of 12th Int. Conf. on Env. Sc. And Tech, Rhodes, Greece

  29. Daghino S, Turci F, Tomatis M (2009) Weathering of chrysotile asbestos by the serpentine rock inhabiting fungus Verticillium leptobactrum. FEMS Micro Eco 69:132–141

    Article  CAS  Google Scholar 

  30. Paris F, Bonnaud P, Ranger J, Lapeyrie F (1994) Phyllosilicate alteration by ectomycorrhizal fungi in-vitro. Acta Bot Gallica 141:529–532

    Article  CAS  Google Scholar 

  31. Calvaruso C, Turpault MP, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microb 72:1258– 1266

    Article  CAS  Google Scholar 

  32. Patel AK, Deshattiwar MK, Chaudhari B.L., Sudhir B.C (2009) Production, purification and chemical characterization of the catecholate siderophore from potent probiotic strains of Bacillus spp. Bioresource Technol 100:368–373

    Article  CAS  Google Scholar 

  33. Haas H (2003) Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl Microbiol Biol 62:316–330

    Article  CAS  Google Scholar 

  34. Cornelis P, Matthijs S (2002) Diversity of siderophore-mediatediron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4:787–798

    Article  CAS  Google Scholar 

  35. Challis GL, Ravel J (2000) Coelichelin, a new peptide siderophore encoded by the Streptomyces coelicolor genome: structure prediction from the sequence of its non-ribosomal peptide synthetase. FEMS Microbiol Lett 187:111–114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. John.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, S., John, P.J. & Ledwani, L. Bacterial Weathering of Asbestos. Silicon 7, 419–431 (2015). https://doi.org/10.1007/s12633-014-9260-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-014-9260-9

Keywords

Navigation