Skip to main content
Log in

Hydrogen Terminated Silicon Nanopowders: Gas Phase Synthesis, Oxidation Behaviour, and Si-H Reactivity

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Silicon nanopowders were prepared by hot-wire chemical vapour deposition (CVD) from monosilane. Wire materials including Hf, Nb, Ta, Mo, W, Rh, Re, Ir, Pd, and Pt were tested. The filament temperature was varied in the range of 400–2000 ℃ and pressures between 1.0–1.5 bar. Products were characterised by bulk elemental analysis and a laser granulometer. The powders were investigated by TG-DSC-MS under inert, O2, and H2O containing atmosphere, respectively, in a temperature range of 20–700 ℃. Hydrogen evolution occurred in three separate steps, depending on the applied gas atmosphere. The oxidation mechanism was explored by the characteristic O x Si-H bands (x = 0–3) observed in ex situ DRIFT experiments. The oxidation of hydrogen terminated silicon surfaces was investigated employing oxygen (O2), hydrogen peroxide (H2 O 2), permanganate (MnO\(_{4}^{-}\)), or peroxodisulfate \(\left (\mathrm {S}_{2}\mathrm {O}_{8}^{2-}\right )\) in a temperature range of 0–120 ℃. The oxidation was stepwise and strongly enhanced after pretreatment by alkyl lithium salts or Grignard reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waltenberg HN, Yates JT Jr. (1995) Chem Rev 95:1589

    Article  Google Scholar 

  2. Buriak JM (2002) Chem Rev 102:1271

    Article  CAS  Google Scholar 

  3. Wiggers H, Starke R, Roth P (2001) Chem Eng Technol 24(3):261

    Article  CAS  Google Scholar 

  4. Caussat B, Hemati M, Couderc JP (1995) Chem Eng Sci 50(22):3615

    Article  CAS  Google Scholar 

  5. Kouadri-Mostefa S, Serp P, Hemati M, Caussat B (2001) Power Technol 120:82

    Article  CAS  Google Scholar 

  6. Tejero-Ezpeleta MP, Buchholz S, Mleczko L (2004) Can J Chem Eng 82(3):520

    Article  CAS  Google Scholar 

  7. Jain GC, Das BK, Bhattacherjee SP (1978) Appl Phys Lett 33(5):445

    Article  CAS  Google Scholar 

  8. Wiesmann H, Ghosh AK,McMahon T, Strongin M(1979) J Appl Phys 50(5):3752

    Article  CAS  Google Scholar 

  9. Matsumura H, Tachibana H (1985) Appl Phys Lett 47(8):833

    Article  CAS  Google Scholar 

  10. Doyle J, Robertson R, Lin GH, He MZ, Gallagher A (1998) J Appl Phys 64(6):3215

    Article  Google Scholar 

  11. Matsumura H (1989) J Appl Phys 65(11):4396

    Article  CAS  Google Scholar 

  12. Mahan AH, Carapella J, Nelson BP, Crandall RS, B I (1991) J Appl Phys 69(9):6728

    Article  CAS  Google Scholar 

  13. Duan HL, S FB (2005) Thin Solid Films 485:126

    Article  CAS  Google Scholar 

  14. Tange S, Inoue K, Tonokura K, Koshi M (2001) Thin Solid Films 395:42

    Article  CAS  Google Scholar 

  15. VanVeenendaal PATT, Schropp EI (2002) Curr Opinion Solid State Mat Sci 6:465

    Article  CAS  Google Scholar 

  16. Zedlitz R, kessler F, Heintze M (1993) J Non-Cryst Solids 164-166:83

    Article  CAS  Google Scholar 

  17. HeintzeM, Zedlitz R,WH N, Schubert MB (1996) J Appl Phys 79(5):2669

    Article  Google Scholar 

  18. Duan HL, Zaharias GA, Bent SF (2001) Thin Solid Films 395:36

    Article  CAS  Google Scholar 

  19. Ledermann A, Weber U, Mukherjee C, Schröder B (2001) Thin Solid Films 395:61

    Article  CAS  Google Scholar 

  20. Pant A, Russel TWF, Huff MC, Aparicio R, Birkmire RW (2001) Ind Eng Chem Res 40:1377

    Article  CAS  Google Scholar 

  21. Schropp REI (2004) Thin Solid Films 455:451

    Google Scholar 

  22. Zheng W, Gallagher A (2006) Thin Solid Films 501:21

    Article  CAS  Google Scholar 

  23. Nakamura S, Koshi M (2006) Thin Solid Films 501:26

    Article  CAS  Google Scholar 

  24. Nozaki Y, Kitazoe M, Horii K, Umemoto H, Masuda A, Matsumura H (2001) Thin Solid Films 395:47

    Article  CAS  Google Scholar 

  25. Holt JK, Swiatek M, Goodwin DG, Atwater HA (2002) J Appl Phys 92(8):4803

    Article  CAS  Google Scholar 

  26. Grunsky D, Schroeder B (2008) Thin Solid Films 516:814

    Article  CAS  Google Scholar 

  27. Odden JO, Egeberg PK, Kjekshus A (2005) Sol Energy Mater & Sol Cells 86:165

    Article  CAS  Google Scholar 

  28. Odden JO, Egeberg PK, Kjekshus A (2006) Int J Chem Kinet 38(5):309

    Article  CAS  Google Scholar 

  29. Van derWert CHM, Hardeman AJ, vanVeenerdaal PATT, vanVeen MK, Rath JK, Schropp REI (2003) Thin Solid Films 427:41

    Article  Google Scholar 

  30. Acker J, Bohmhammel K, Henneberg E, Irmer G, Röver I, Roewer G (2000) Adv Mater 12:1605

    Article  CAS  Google Scholar 

  31. Henneberg E, Acker J, R¨over I, Roewer G, Bohmhammel K (2002) Thermochimica Acta 382:297

    Article  CAS  Google Scholar 

  32. Hahn T, Heimfarth JP, Roewer G, Kroke E (2008) Phys Status Solidi B 245(5):959

    Article  CAS  Google Scholar 

  33. Liu S (2008) J Nanosci Nanotechnol 8:1110

    CAS  Google Scholar 

  34. Baldwin RK, Pettigrew KA, Ratai E, Augustine MP, Kauzlarich SM (2002) Chem Commun:1822

  35. Heath JR (1992) Sci 258:1131

    Article  CAS  Google Scholar 

  36. Pettigrew KA, Liu QL, Power PP, Kauzlarich SM (2003) Chem Mater 15:4005–4011

    Article  CAS  Google Scholar 

  37. Yang C-S, Bley RA, Kauzlarich SM, Lee HWH, Delgado GR (1999) J Am Chem Soc 121:5191–5195

    Article  CAS  Google Scholar 

  38. Wilcoxon JP, Samara GA (1999) Phys Rev Lett 74:3164

    CAS  Google Scholar 

  39. Wilcoxon JP, Samara GA, Provenico PN (1999) Phys Rev B 60:2704

    Article  CAS  Google Scholar 

  40. Archer RJ (1960) J Phys Chem Solids 14:104

    Article  CAS  Google Scholar 

  41. Salonen J, Lehto V-P (2008) Chem Eng J 137:162

    Article  CAS  Google Scholar 

  42. Hummel RE, Chang S-S (1992) Appl Phys Lett 61:1965

    Article  CAS  Google Scholar 

  43. Heinrich JL, L CC, Credo GM, Silor MJ, Kavanagh KL (1992) Science 255:66

    Article  CAS  Google Scholar 

  44. Belomoin G, Therrien J, Nayfeh M (2000) Appl Phys Lett 77:779

    Article  CAS  Google Scholar 

  45. Nayfeh M, Barry N, Therrien J, Akcakir O, Gratton E, Belonoin G (2001) Appl Phys Lett 78:1131

    Article  CAS  Google Scholar 

  46. Monk DJ, Soane DS, Howe RT (1993) Thin Solid Films 232(1):1

    Article  CAS  Google Scholar 

  47. Quenney KT, Weldon MK, Chang JP, Chabal YJ, Gurevich AB, Sapjeta J, Opila RL (2000) J Appl Phys 87:1322

    Article  Google Scholar 

  48. Zhou X, IshidaM, Imanishi A, Nakato Y (2000) Electrochim Acta 45:4655

    Article  CAS  Google Scholar 

  49. Caldas MJ (2000) Phys Status Solidi B 217(1):641

    Article  CAS  Google Scholar 

  50. Zaera FZ (2008) Progress Surf. Sci. 69:1

    Article  Google Scholar 

  51. Krüger A (2008) J Mater Chem 18(13):1485

    Article  Google Scholar 

  52. Osawa E (2008) Pure Appl Chem 80(7):1365

    Article  CAS  Google Scholar 

  53. Nalwa HS (2004) Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers

  54. DenBreejen JP, Radstake PB, Bezemer GL, Bitter JH, Frseth V, Holmen A, DeJong KP (2009) J Am Chem Soc 131:7197

    Article  CAS  Google Scholar 

  55. Somorjai GA, Frei H, Park JY (2009) J Am Chem Soc 131(46):16589

    Article  CAS  Google Scholar 

  56. Alayoglu S, Aliaga C, Sprung C, Somorjai GA (2011) Catal Lett 141:914

    Article  CAS  Google Scholar 

  57. Mawhinney DB, Glass Jr J A, Yates Jr J (1997) J Phys Chem B 101:1202

    Article  CAS  Google Scholar 

  58. Wesetermann J, Nienhaus H, Mönch W (1994) Surf Sci 311:101

    Article  Google Scholar 

  59. Deal BE (2007) Interface 17:42

    Google Scholar 

  60. Rao GR, Wang Z, Watanabe H, Aoyagi M, Urisu T (2004) Surf Sci 570:178

    Article  CAS  Google Scholar 

  61. Wang Z, Urisu T, Watanabe H, Ooi K, Ranga Rao G, Nanbu S, Maki H, Aoyagi M (2005) Surf Sci 575:330

    Article  CAS  Google Scholar 

  62. Lide DR (2008) CRC-Handbook of Chemistry and Physics. 88th Edition

  63. Gmelin. Handbook of Inorganic Chemistry

  64. Terashi M, Kuge J-K, Shinohara M, Shoji D, Niwano M (1998) Appl Surf Sci 130-132:260

    Article  CAS  Google Scholar 

  65. Ferng S, Lin C, Yang K, Lin D, Chiang T (2005) Phys Rev Lett 94:1

    Article  Google Scholar 

  66. Cheng CC, Yates Jr JT (1991) Phys Rev B 43:4041

    Article  CAS  Google Scholar 

  67. Colvin PGVL, George SM (1988) Phys Rev B 37:8234

    Article  Google Scholar 

  68. Sprung C (2007) Diploma thesis - TU Bergakademie Freiberg. Germany

  69. Weldon MK, Queeney KT, Gurevich AB, Stefanov BB, Chabal YJ, Raghavachari K (2000) J Chem Phys 113:2440

    Article  CAS  Google Scholar 

  70. Cerofolini G. F, Mascolo D, Vlad M. O (2006) J Appl Phys 100. art. no. 054308.

  71. Teraishi K, Takaba H, Yamada A, Endou A, Gunji I, Chatterjee A, Kubo A, Miyamoto A, Nakamura K, Kitajima M (1998) J Chem Phys 109:1495

    Article  CAS  Google Scholar 

  72. Hofmeister H, Kahler U, Jutzi P, Schubert U (2003) pp. 262: Silicon chemistry, From atom to extended systems, Weinheim

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kroke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sprung, C., Heimfarth, J., Erler, J. et al. Hydrogen Terminated Silicon Nanopowders: Gas Phase Synthesis, Oxidation Behaviour, and Si-H Reactivity. Silicon 7, 31–42 (2015). https://doi.org/10.1007/s12633-014-9206-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-014-9206-2

Keywords

Navigation