Skip to main content
Log in

Enhancement of Optical and Physical Parameters of Lead Zinc Silicate Glasses by Doping W+3 Ions

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Quadruple glass system with the composition 60SiO2 -35Pb3O4 – (5-x) ZnO- x WO3, where (\(0 \le x \le 5\)mol %) was synthesized by the classic quenching method. X-ray diffractograms prove the amorphous description of present glasses. Some physical parameters like density, molar volume, oxygen packing density, interionic distance are investigated. These parameters were found to be dependent on tungsten ions in PZS glasses. Optical spectra are measured at ordinary temperature. The dispersion issues as refractive index (n) and extinction coefficient (k) are established in the wavelength range of 300–2500 nm. The energy band gap(Eg) and Urbach energy(Eu) with indirect and direct transitions are assessed using the Tauc model. It is found that the optical energy band gap shifts toward lower energy with increasing tungsten ions in the glass samples. It decreases from 2.815 eV to 2.41 eV and from 2.917 eV to 2.791 eV for indirect and direct band gaps calculation respectively, with increasing WO3 ions concentration from 0 to 5 mol%. The constant of dielectric function in form of real and imaginary parts are examined. Additional physical issues as steepness, skin depth, cut-off wavelength, dissipation factor, optical and electrical conductivities, molar reflectivity, molar polarizability, optical basicity, electronic polarizability and electronegativity are estimated as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

My manuscript and associated personal data will be shared with Research Square for the delivery of the author dashboard.

References

  1. Vogel W (1994) Glass chemistry. Springer, Berlin Heidelberg, pp 41–56

    Book  Google Scholar 

  2. Rybicki J, Rybicka A, Witkowska A, Bergmański G, Di Cicco A, Minicucci M, Mancini G (2001) The structure of lead-silicate glasses: molecular dynamics and EXAFS studies. J Phys: Condens Matter 13(43):9781–9797. https://doi.org/10.1088/0953-8984/13/43/309

    Article  CAS  Google Scholar 

  3. Wang PW, Zhang L (1996) Structural role of lead in lead silicate glasses derived from XPS spectra. J Non-Cryst Solids 194(1–2):129–134. https://doi.org/10.1016/0022-3093(95)00471-8

    Article  CAS  Google Scholar 

  4. Khalil EMA, ElBatal FH, Hamdy YM, Zidan HM, Aziz MS, Abdelghany AM (2010) Infrared absorption spectra of transition metals-doped soda lime silica glasses. Physica B 405(5):1294–1300. https://doi.org/10.1016/j.physb.2009.11.070

    Article  CAS  Google Scholar 

  5. Ghoneim NA, ElBatal HA, Abdelghany AM, Ali IS (2011) Shielding behavior of V2O5 doped lead borate glasses towards gamma irradiation. J Alloy Compd 509(24):6913–6919. https://doi.org/10.1016/j.jallcom.2011.03.180

    Article  CAS  Google Scholar 

  6. Bechinger C, Burdis MS, Zhang J-G (1997) Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films. Solid State Commun 101:753–756. https://doi.org/10.1016/s0038-1098(96)00703-x

    Article  CAS  Google Scholar 

  7. Donnadieu A (1989) Electrochromic materials. Mat Sci Eng B3:185–195

    Article  CAS  Google Scholar 

  8. Poirier G, Cassanjes FC, Messaddeq Y, Ribeiro SJL (2009) Crystallization of monoclinic WO3 in tungstate fluorophosphate glasses. J Non-Cryst Solids 355(7):441–446. https://doi.org/10.1016/j.jnoncrysol.2009.01.008

    Article  CAS  Google Scholar 

  9. Lasbrugnas C, Thomas P, Masson O, Champarnaud-Mesjard JC, Fargin E, Rodriguez V, Lahaye M (2009) Second harmonic generation of thermally poled tungsten tellurite glass. Opt Mater 31(6):775–780. https://doi.org/10.1016/j.optmat.2008.08.002

    Article  CAS  Google Scholar 

  10. Ramesh Babu P, Vijay R, Brammaiah S, Naga Raju G, Krishna Rao D (2018) Electrical and spectroscopic studies on ZnO-As2O3-Sb2O3 glasses doped with Y2O3. Mater Today Proc 5:26356–26364. https://doi.org/10.1016/j.matpr.2018.08.087

  11. Sheoran A, Sanghi S, Rani S, Agarwal A, Seth VP (2009) Impedance spectroscopy and dielectric relaxation in alkali tungsten borate glasses. J Alloy Compd 475:804–809. https://doi.org/10.1016/j.jallcom.2008.08.006

    Article  CAS  Google Scholar 

  12. Alomairy S, Aboraia AM, Shaaban ER, Shaaban KS (2021) Comparative Studies on Spectroscopic and Crystallization Properties of Al2O3 -Li2O- B2O3-TiO2 glasses. Braz J Phys. https://doi.org/10.1007/s13538-021-00928-1

    Article  Google Scholar 

  13. Abdel Wahab EA, Shaaban KS, Alomairy S et al (2021) Electronegativity and optical basicity of glasses containing Na/Pb/B and their high performance for radiation applications: role of ZrO2 nanoparticles. Eur Phys J Plus 136:636. https://doi.org/10.1140/epjp/s13360-021-01572-z

    Article  CAS  Google Scholar 

  14. El-Maaref AA, Wahab EAA, Shaaban KS, El-Agmy RM (2021) Enhancement of spectroscopic parameters of Er3+-doped cadmium lithium gadolinium silicate glasses as an active medium for lasers and optical amplifiers in the NIR-region. Solid State Sci 113:106539. https://doi.org/10.1016/j.solidstatesciences.2021.106539

    Article  CAS  Google Scholar 

  15. Mahmoud M, Makhlouf SA, Alshahrani B, Yakout HA, Shaaban KS, Wahab EAA (2021) Experimental and simulation investigations of mechanical properties and gamma radiation shielding of lithium cadmium gadolinium silicate glasses doped erbium ions. Silicon. https://doi.org/10.1007/s12633-021-01062-y

    Article  Google Scholar 

  16. Mahmoud KH, Alsubaie AS, Wahab EAA, Abdel-Rahim FM, Shaaban KS (2021) Research on the effects of yttrium on bismuth Titanate borosilicate glass system. Silicon. https://doi.org/10.1007/s12633-021-01125-0

    Article  Google Scholar 

  17. Alomairy S, Al-Buriahi MS, Abdel Wahab EA, Sriwunkum C, Shaaban KS (2021) Synthesis, FTIR, and neutron/charged particle transmission properties of Pb3O4–SiO2–ZnO–WO3 glass system. Ceram Int 47:17322–17330. https://doi.org/10.1016/j.ceramint.2021.03.045

    Article  CAS  Google Scholar 

  18. Sayed MA, Ali AM, Abd El-Rehim AF, Abdel Wahab EA, Shaaban KS (2021) Dispersion parameters, polarizability, and basicity of lithium phosphate glasses. J Electron Mater. https://doi.org/10.1007/s11664-021-08921-9

    Article  Google Scholar 

  19. Shaaban KS, Boukhris I, Kebaili I, Al-Buriahi MS (2021) Spectroscopic and attenuation shielding studies on B2O3-SiO2-LiF- ZnO-TiO2 glasses. Silicon. https://doi.org/10.1007/s12633-021-01080-w

    Article  Google Scholar 

  20. Mahmoud KH, Elsayed KA, Wahab EAA, Abdel-Rahim FM, Shaaban KS (2021) Structural and radiation shielding simulation of B2O3–SiO2–LiF–ZnO–TiO2 glasses. J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-021-06165-1

    Article  Google Scholar 

  21. Alothman MA, Alrowaili ZA, Alzahrani JS, Wahab A, Olarinoye EAA, Sriwunkum IO, Shaaban C, Al-Buriahi KS, MS (2021) Significant influence of MoO3 content on synthesis, mechanical, and radiation shielding properties of B2O3-Pb3O4-Al2O3 glasses. J Alloy Compd: 160625. https://doi.org/10.1016/j.jallcom.2021.160625

  22. Abdel Wahab EA, Shaaban KS, Yousef ES (2020) Enhancement of optical and mechanical properties of sodium silicate glasses using zirconia. Opt Quant Electron 52. https://doi.org/10.1007/s11082-020-02575-3

  23. Zaka H, Parditka B, Erdélyi Z, Atyia HE, Sharma P, Fouad SS (2019) Investigation of dispersion parameters, dielectric properties and opto–electrical parameters of ZnO thin film grown by ALD. Optik: 163933. https://doi.org/10.1016/j.ijleo.2019.163933

  24. El Radaf IM, Fouad SS, Ismail AM, Sakr GB (2018) Influence of spray time on the optical and electrical properties of CoNi2S4 thin films. Mater Res Express 5(4):046406. https://doi.org/10.1088/2053-1591/aaba0a

    Article  CAS  Google Scholar 

  25. Shakra AM, Atyia HE, Fadel M (2018) Single oscillator parameters and optical properties for ZnSnSb2 chalcopyrite in thin film form. J Alloy Compd 763:983–989. https://doi.org/10.1016/j.jallcom.2018.05.290

    Article  CAS  Google Scholar 

  26. Girisun TCS, Dhanuskodi S (2009) Linear and nonlinear optical properties of tris thiourea zinc sulphate single crystals. Cryst Res Technol 44:1297–1302. https://doi.org/10.1002/crat.200900351

    Article  CAS  Google Scholar 

  27. Abdullah AQ (2013) Surface and volume energy loss, optical conductivity of Rhodamine 6G dye (R6G). Chem Mater Res 3(10)

  28. Lorentz HA (1880) Ueber die Refractionsconstante. Ann Phys 9:641. https://doi.org/10.1002/andp.18802450406

  29. Bade BR, Rondiya SR, Jadhav YA, Kamble MM, Barma SV, Jathar SB, Nasane MP, Jadkar SR, Funde AM, Dzade NY (2021) Investigations of the structural, optoelectronic and band alignment properties of Cu2ZnSnS4 prepared by hot-injection method towards low-cost photovoltaic applications. J Alloy Compd 854:157093. https://doi.org/10.1016/j.jallcom.2020.157093

    Article  CAS  Google Scholar 

  30. Dimitrov V, Sakka S (1996) Electronic oxide polarizability and optical basicity of simple oxides. J Appl Phys 79(3):1736–1740. https://doi.org/10.1063/1.360962

    Article  CAS  Google Scholar 

  31. Melo BMG, Graça MPF, Prezas PR, Valente MA, Almeida AF, Freire FNA, Bih L (2016) Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics. J Appl Phys 120(5):051701. https://doi.org/10.1063/1.4958935

    Article  CAS  Google Scholar 

  32. Abd-Allah WM, Saudi HA, Shaaban KS, Farroh HA (2019) Investigation of structural and radiation shielding properties of 40B2O3–30PbO–(30-x) BaO-x ZnO glass system. Appl Phys A 125(4). https://doi.org/10.1007/s00339-019-2574-0

  33. Saudi HA, Abd-Allah WM, Shaaban KS (2020) Investigation of gamma and neutron shielding parameters for borosilicate glasses doped europium oxide for the immobilization of radioactive waste. J Mater Sci: Mater Electron 31:6963–6976. https://doi.org/10.1007/s10854-020-03261-6

    Article  CAS  Google Scholar 

  34. Abdel Wahab EA, Shaaban KS, Elsaman R, Yousef ES (2019) Radiation shielding and physical properties of lead borate glass doped ZrO2 nanoparticles. Appl Phys A 125(12). https://doi.org/10.1007/s00339-019-3166-8

  35. Shaaban KS, Abdel Wahab EA, El-Maaref AA, Abdelawwad M, Shaaban ER, Yousef ES, Börcsök J (2020) Judd–Ofelt analysis and physical properties of erbium modified cadmium lithium gadolinium silicate glasses. J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-020-03065-8

    Article  Google Scholar 

  36. Shaaban KS, Koubisy MSI, Zahran HY, Yahia IS (2020) Spectroscopic properties, electronic polarizability, and optical basicity of Titanium–Cadmium tellurite glasses doped with different amounts of lanthanum. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-020-01640-4

    Article  Google Scholar 

  37. Somaily HH, Shaaban KhS, Makhlouf SA, Algarni H, Hegazy HH, Wahab EAA, Shaaban ER (2020) Comparative studies on polarizability, optical basicity and optical properties of lead borosilicate modified with titania. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-020-01650-2

    Article  Google Scholar 

  38. El-Maaref AA, Wahab EAA, Shaaban KS, Abdelawwad M, Koubisy MSI, Börcsök J, Yousef ES (2020) Visible and mid-infrared spectral emissions and radiative rates calculations of Tm3+ doped BBLC glass. Spectrochim Acta Part A Mol Biomol Spectrosc 242:118774. https://doi.org/10.1016/j.saa.2020.118774

    Article  CAS  Google Scholar 

  39. Dimitrov V, Komatsu T (1999) Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses. J Non-Cryst Solids 249(2–3):160–179. https://doi.org/10.1016/s0022-3093(99)00317-8

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Taif University Researchers Supporting Project number (TURSP-2020/24), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

E.A. Abdel Wahab, Kh. S. Shaaban: Conceptualization, Methodology, Writing Reviewing Discussion and Editing and Ateyyah M. Al-Baradi, Reviewing, Editing and helping in reviewers responses.

Corresponding author

Correspondence to E. A. Abdel Wahab.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests. 

Ethics Approval and Consent to Participate

Not applicable. 

Disclosure of Potential Conflicts of Interest

We have no potential conflict of interest. 

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahab, E.A.A., Shaaban, K.S. & Al-Baradi, A.M. Enhancement of Optical and Physical Parameters of Lead Zinc Silicate Glasses by Doping W+3 Ions. Silicon 14, 4915–4924 (2022). https://doi.org/10.1007/s12633-021-01236-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01236-8

Keywords

Navigation