Skip to main content
Log in

Microscopic damage evolution of anisotropic rocks under indirect tensile conditions: Insights from acoustic emission and digital image correlation techniques

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The anisotropy induced by rock bedding structures is usually manifested in the mechanical behaviors and failure modes of rocks. Brazilian tests are conducted for seven groups of shale specimens featuring different bedding angles. Acoustic emission (AE) and digital image correlation (DIC) technologies are used to monitor the in-situ failure of the specimens. Furthermore, the crack morphology of damaged samples is observed through scanning electron microscopy (SEM). Results reveal the structural dependence on the tensile mechanical behavior of shales. The shale disk exhibits compression in the early stage of the experiment with varying locations and durations. The location of the compression area moves downward and gradually disappears when the bedding angle increases. The macroscopic failure is well characterized by AE event location results, and the dominant frequency distribution is related to the bedding angle. The b-value is found to be stress-dependent. The crack turning angle between layers and the number of cracks crossing the bedding both increase with the bedding angle, indicating competition between crack propagations. SEM results revealed that the failure modes of the samples can be classified into three types: tensile failure along beddings with shear failure of the matrix, ladder shear failure along beddings with tensile failure of the matrix, and shear failure along multiple beddings with tensile failure of the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.D. Martin, S. Giger, and G.W. Lanyon, Behaviour of weak shales in underground environments, Rock Mech. Rock Eng., 49(2016), No. 2, p. 673.

    Article  Google Scholar 

  2. C.M. Sayers, The effect of anisotropy on the Young’s moduli and Poisson’s ratios of shales, Geophys. Prospect., 61(2013), No. 2, p. 416.

    Article  Google Scholar 

  3. G. Khanlari, B. Rafiei, and Y. Abdilor, An experimental investigation of the Brazilian tensile strength and failure patterns of laminated sandstones, Rock Mech. Rock Eng., 48(2015), No. 2, p. 843.

    Article  Google Scholar 

  4. C.Q. Chu, S.C. Wu, S.H. Zhang, P. Guo, and Z. Min, Mechanical behavior anisotropy and fracture characteristics ofbedded sandstone, J. Cent. South Univ., 51(2020), No. 8, p. 2232.

    Google Scholar 

  5. T.Z. Zhang, H.G. Ji, X.B. Su, et al., Evaluation and classification of rock heterogeneity based on acoustic emission detection, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2117.

    Article  Google Scholar 

  6. J.W. Cho, H. Kim, S. Jeon, and K.B. Min, Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist, Int. J. Rock Mech. Min. Sci., 50(2012), p. 158.

    Article  Google Scholar 

  7. S.Q. Yang, P.F. Yin, B. Li, and D.S. Yang, Behavior of transversely isotropic shale observed in triaxial tests and Brazilian disc tests, Int. J. Rock Mech. Min. Sci., 133(2020), art. No. 104435.

  8. S. Lozovyi and A. Bauer, From static to dynamic stiffness of shales: Frequency and stress dependence, Rock Mech. Rock Eng., 52(2019), No. 12, p. 5085.

    Article  Google Scholar 

  9. E. Hoek, Fracture of anisotropic rock, J. S. Afr. Inst. Min. Metall., 64(1964), No. 10, p. 510.

    Google Scholar 

  10. H. Niandou, J.F. Shao, J.P. Henry, and D. Fourmaintraux, Laboratory investigation of the mechanical behaviour of Tournemire shale, Int. J. Rock Mech. Min. Sci., 34(1997), No. 1, p. 3.

    Article  Google Scholar 

  11. Q. Liu, B. Liang, W.J. Sun, and H. Zhao, Experimental study on the difference of shale mechanical properties, Adv. Civ. Eng., 2021(2021), p. 1.

    Google Scholar 

  12. N.D.J. Simpson, A. Stroisz, A. Bauer, A. Vervoort, and R.M. Holt, Failure mechanics of anisotropic shale during Brazilian tests, [in] Proceedings of the 48th US Rock Mechanics/Geomechanics Symposium, Minneapolis, 2014.

  13. Z.F. Jin, W.X. Li, C.R. Jin, J. Hambleton, and G. Cusatis, Anisotropic elastic, strength, and fracture properties of Marcellus shale, Int. J. Rock Mech. Min. Sci., 109(2018), p. 124.

    Article  Google Scholar 

  14. Y.T. Gao, T.H. Wu, and Y. Zhou, Application and prospective of 3D printing in rock mechanics: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 1.

    Article  CAS  Google Scholar 

  15. G.W. Xu, C. He, Z.Q. Chen, and A. Su, Transverse isotropy of phyllite under Brazilian tests: Laboratory testing and numerical simulations, Rock Mech. Rock Eng., 51(2018), No. 4, p. 1111.

    Article  Google Scholar 

  16. Z. Aliabadian, G. Zhao, and A. Russell, Failure, crack initiation and the tensile strength of transversely isotropic rock using the Brazilian test, Int. J. Rock Mech. Min. Sci., 122(2019), art. No. 104073.

  17. X.M. Yin, X. Zhang, Y.J. Lei, and L.N. Wang, Effect of loading direction on the critical characteristic strength and energy evolution of quartz mica schist and microscale mechanisms, Bull. Eng. Geol. Environ., 80(2021), No. 11, p. 8693.

    Article  Google Scholar 

  18. P. Li, M.F. Cai, P.T. Wang, Q.F. Guo, S.J. Miao, and F.H. Ren, Mechanical properties and energy evolution of jointed rock specimens containing an opening under uniaxial loading, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1875.

    Article  Google Scholar 

  19. M. Sakha, M. Nejati, A. Aminzadeh, S. Ghouli, M.O. Saar, and T. Driesner, On reliable prediction of fracture path in anisotropic rocks, Procedia Struct. Integr., 39(2022), p. 792.

    Article  Google Scholar 

  20. L. Yang, M. Sharafisafa, and L.M. Shen, On the fracture mechanism of rock-like materials with interbedded hard-soft layers under Brazilian tests, Theor. Appl. Fract. Mech., 116(2021), art. No. 103102.

  21. P. Xu, R.S. Yang, J.J. Zuo, et al., Research progress of the fundamental theory and technology of rock blasting, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 705.

    Article  Google Scholar 

  22. Y.Y. Meng, H.W. Jing, X.W. Liu, Q. Yin, L. Zhang, and H.X. Liu, Experimental and numerical investigation on the effect of bedding plane properties on fracture behaviour of sandy mudstone, Theor. Appl. Fract. Mech., 114(2021), art. No. 102989.

  23. C.D. Ding, Y. Zhang, D.W. Hu, H. Zhou, and J.F. Shao, Foliation effects on mechanical and failure characteristics of slate in 3D space under Brazilian test conditions, Rock Mech. Rock Eng., 53(2020), No. 9, p. 3919.

    Article  Google Scholar 

  24. S. Na, W. Sun, M.D. Ingraham, and H. Yoon, Effects of spatial heterogeneity and material anisotropy on the fracture pattern and macroscopic effective toughness of Mancos Shale in Brazilian tests, J. Geophys. Res., 122(2017), No. 8, p. 6202.

    Article  Google Scholar 

  25. H. Wang, Y. Li, S.G. Cao, et al., Fracture toughness analysis of HCCD specimens of Longmaxi shale subjected to mixed mode I–II loading, Eng. Fract. Mech., 239(2020), art. No. 107299.

  26. X.W. Yang, X.P. Zhang, Q. Zhang, C.D. Li, and D.J. Wang, Study on the mechanisms of crack turning in bedded rock, Eng. Fract. Mech., 247(2021), art. No. 107630.

  27. A. Vervoort, K.B. Min, H. Konietzky, et al., Failure of transversely isotropic rock under Brazilian test conditions, Int. J. Rock Mech. Min. Sci., 70(2014), p. 343.

    Article  Google Scholar 

  28. C.B. Li, B.B. Zou, H.W. Zhou, and J. Wang, Experimental investigation on failure behaviors and mechanism of an anisotropic shale in direct tension, Geomech. Geophys. Geo-Energy Geo-Resour., 7(2021), No. 4, art. No. 98.

  29. G. Feng, Y. Kang, X.C. Wang, Y.Q. Hu, and X.H. Li, Investigation on the failure characteristics and fracture classification of shale under Brazilian test conditions, Rock Mech. Rock Eng., 53(2020), No. 7, p. 3325.

    Article  Google Scholar 

  30. N. Wu, J.Y. Fu, Z.D. Zhu, and B. Sun, Experimental study on the dynamic behavior of the Brazilian disc sample of rock material, Int. J. Rock Mech. Min. Sci., 130(2020), art. No. 104326.

  31. Z.Y. Han, D.Y. Li, and X.B. Li, Experimental study on the dynamic behavior of sandstone with coplanar elliptical flaws from macro, meso, and micro viewpoints, Theor. Appl. Fract. Mech., 120(2022), art. No. 103400.

  32. R. Chen and K.W. Xia, Dynamic tensile failure of rocks under static pre-tension, Int. J. Rock Mech. Min. Sci., 80(2015), p. 12.

    Article  Google Scholar 

  33. B.X. Huang, L.H. Li, Y.F. Tan, R.L. Hu, and X. Li, Investigating the meso-mechanical anisotropy and fracture surface roughness of continental shale, J. Geophys. Res., 125(2020), No. 8, art. No. e2019JB017828.

  34. B. Debecker and A. Vervoort, Experimental observation of fracture patterns in layered slate, Int. J. Fract., 159(2009), No. 1, p. 51.

    Article  Google Scholar 

  35. J. Wang, L.Z. Xie, H.P. Xie, et al., Effect of layer orientation on acoustic emission characteristics of anisotropic shale in Brazilian tests, J. Nat. Gas Sci. Eng., 36(2016), p. 1120.

    Article  Google Scholar 

  36. Y. Li, L. Xue, and X.W. Wu, Study on acoustic emission and X-ray computed-tomography characteristics of shale samples under uniaxial compression tests, Environ. Earth Sci., 78(2019), No. 5, p. 1.

    Article  Google Scholar 

  37. P.F. Yin and S.Q. Yang, Experimental investigation of the strength and failure behavior of layered sandstone under uniaxial compression and Brazilian testing, Acta Geophys., 66(2018), No. 4, p. 585.

    Article  Google Scholar 

  38. V. Kramarov, P.N. Parrikar, and M. Mokhtari, Evaluation of fracture toughness of sandstone and shale using digital image correlation, Rock Mech. Rock Eng., 53(2020), No. 9, p. 4231.

    Article  Google Scholar 

  39. M. Sharafisafa and L.M. Shen, Experimental investigation of dynamic fracture patterns of 3D printed rock-like material under impact with digital image correlation, Rock Mech. Rock Eng., 53(2020), No. 8, p. 3589.

    Article  Google Scholar 

  40. S.Q. Yang, P.F. Yin, and Y.H. Huang, Experiment and discrete element modelling on strength, deformation and failure behaviour of shale under Brazilian compression, Rock Mech. Rock Eng., 52(2019), No. 11, p. 4339.

    Article  Google Scholar 

  41. J. Li, J. Zhao, H.C. Wang, K. Liu, and Q.B. Zhang, Fracturing behaviours and AE signatures of anisotropic coal in dynamic Brazilian tests, Eng. Fract. Mech., 252(2021), art. No. 107817.

  42. R.J. Wu, H.B. Li, and D.P. Wang, Full-field deformation measurements from Brazilian disc tests on anisotropic phyllite under impact loads, Int. J. Impact Eng., 149(2021), art. No. 103790.

  43. K.H. Li, Z.Y. Yin, D.Y. Han, X. Fan, R.H. Cao, and H. Lin, Size effect and anisotropy in a transversely isotropic rock under compressive conditions, Rock Mech. Rock Eng., 54(2021), No. 9, p. 4639.

    Article  Google Scholar 

  44. K.H. Li, Y. Cheng, Z.Y. Yin, D.Y. Han, and J.J. Meng, Size effects in a transversely isotropic rock under Brazilian tests: Laboratory testing, Rock Mech. Rock Eng., 53(2020), No. 6, p. 2623.

    Article  Google Scholar 

  45. D.Q. Dan and H. Konietzky, Numerical simulations and interpretations of Brazilian tensile tests on transversely isotropic rocks, Int. J. Rock Mech. Min. Sci., 71(2014), p. 53.

    Article  Google Scholar 

  46. D.W. Hobbs, The tensile strength of rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1(1964), No. 3, p. 385.

    Article  Google Scholar 

  47. K. Barron, Brittle fracture initiation in and ultimate failure of rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 8(1971), No. 6, p. 565.

    Article  Google Scholar 

  48. G. Barla and N. Innaurato, Indirect tensile testing of anisotropic rocks, Rock Mech., 5(1973), No. 4, p. 215.

    Article  Google Scholar 

  49. D.Y. Li and L.N.Y. Wong, The Brazilian disc test for rock mechanics applications: Review and new insights, Rock Mech. Rock Eng., 46(2013), No. 2, p. 269.

    Article  Google Scholar 

  50. S.H. Zhang, S.C. Wu, G. Zhang, P. Guo, and C.Q. Chu, Three-dimensional evolution of damage in sandstone Brazilian discs by the concurrent use of active and passive ultrasonic techniques, Acta Geotech., 15(2020), No. 2, p. 393.

    Article  Google Scholar 

  51. Z.T. Bieniawski and I. Hawkes, Suggested methods for determining tensile strength of rock materials, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 15(1978), No. 3, p. 99.

    Article  Google Scholar 

  52. Y.S. Zhao, C.C. Chen, S.C. Wu, P. Guo, and B.L. Li, Effects of 2D&3D nonparallel flaws on failure characteristics of brittle rock-like samples under uniaxial compression: Insights from acoustic emission and DIC monitoring, Theor. Appl. Fract. Mech., 120(2022), art. No. 103391.

  53. P. Guo, S.C. Wu, G. Zhang, and C.Q. Chu, Effects of thermally-induced cracks on acoustic emission characteristics of granite under tensile conditions, Int. J. Rock Mech. Min. Sci., 144(2021), art. No. 104820.

  54. B. Gutenberg and C.F. Richter, Frequency of earthquakes in California, Bull. Seismol. Soc. Am., 34(1944), No. 4, p. 185.

    Article  Google Scholar 

Download references

Acknowledgements

Thanks for the help from Dr. Yusong Zhao. This work is financially supported by the National Natural Science Foundation of China (No. 51934003) and the Major Science and Technology Special Project of Yunnan Province, China (Nos. 202102AF080001 and 202102AG050024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunchuan Wu.

Ethics declarations

Shunchuan Wu is the editorial board member for this journal and was not involved in the editorial review or the decision to publish this article. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, C., Wu, S., Zhang, C. et al. Microscopic damage evolution of anisotropic rocks under indirect tensile conditions: Insights from acoustic emission and digital image correlation techniques. Int J Miner Metall Mater 30, 1680–1691 (2023). https://doi.org/10.1007/s12613-023-2649-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2649-y

Keywords

Navigation