Skip to main content
Log in

Numerical investigation of the mechanical behavior of the backfill—rock composite structure under triaxial compression

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

To ensure safe and economical backfill mining, the mechanical response of the backfill—rock interaction system needs to be understood. The numerical investigation of the mechanical behavior of backfill—rock composite structure (BRCS) under triaxial compression, which includes deformation, failure patterns, strength characteristics, and acoustic emission (AE) evolution, was proposed. The models used in the tests have one rough interface, two cement—iron tailings ratios (CTRs), four interface angles (IAs), and three confining pressures (CPs). Results showed that the deformation, strength characteristics, and failure patterns of BRCS under triaxial compression depend on IA, CP, and CTR. The stress—strain curves of BRCS under triaxial compression could be divided into five stages, namely, compaction, elasticity, yield, strain softening, and residual stress. The relevant AE counts have corresponding relationships with different stages. The triaxial compressive strengths of composites increase linearly with the increase of the CP. Furthermore, the CP stress strengthening effect occurs. When the IAs are 45° and 60°, the failure areas of composites appear in the interface and backfill. When the IAs are 75° and 90°, the failure areas of composites appear in the backfill, interface, and rock. Moreover, the corresponding failure modes yield the combined shear failure. The research results provide the basis for further understanding of the stability of the BRCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wang, Z.Q. Wang, A.X. Wu, L. Wang, Q. Na, C. Cao, and G.F. Yang, Experimental research and numerical simulation of the multi-field performance of cemented paste backfill: Review and future perspectives, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 193.

    Article  CAS  Google Scholar 

  2. G.L. Xue, E. Yilmaz, W.D. Song, and S. Cao, Mechanical, flexural and microstructural properties of cement—tailings matrix composites: Effects of fiber type and dosage, Composites Part B, 172(2019), p. 131.

    Article  CAS  Google Scholar 

  3. E. Yilmaz, Stope depth effect on field behaviour and performance of cemented paste backfills, Int. J. Min. Reclam. Environ., 32(2018), No. 4, p. 273.

    Article  CAS  Google Scholar 

  4. T. Deschamps, M. Benzaazoua, and B. Bussière, Laboratory study of surface paste disposal for sulfidic tailings: Physical model testing, Miner. Eng., 24(2011), No. 8, p. 794.

    Article  CAS  Google Scholar 

  5. L. Li and P.Y. Yang, A numerical evaluation of continuous backfilling in cemented paste backfilled stope through an application of wick drains, Int. J. Min. Sci. Technol., 25(2015), No. 6, p. 897.

    Article  CAS  Google Scholar 

  6. H.J. Lu, C.C. Qi, Q.S. Chen, D.Q. Gan, Z.L. Xue, and Y.J. Hu, A new procedure for recycling waste tailings as cemented paste backfill to underground stopes and open pits, J. Clean. Prod., 188(2018), p. 601.

    Article  Google Scholar 

  7. C.C. Qi, Big data management in the mining industry, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 131.

    Article  Google Scholar 

  8. B.D. Thompson, W.F. Bawden, and M.W. Grabinsky, In situ measurements of cemented paste backfill at the Cayeli Mine, Can. Geotech. J., 49(2012), No. 7, p. 755.

    Article  Google Scholar 

  9. T. Yilmaz, B. Ercikdi, and H. Deveci, Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings, J. Environ. Manage., 222(2018), p. 250.

    Article  CAS  Google Scholar 

  10. I.L.S. Libos and L. Cui, Effects of curing time, cement content, and saturation state on mode-I fracture toughness of cemented paste backfill, Eng. Fract. Mech., 235(2020), art. No. 107174.

  11. G.L. Xue and E. Yilmaz, Strength, acoustic, and fractal behavior of fiber reinforced cemented tailings backfill subjected to triaxial compression loads, Constr. Build. Mater., 338(2022), art. No. 127667.

  12. Z.Y. Zhao, S. Cao, and E. Yilmaz, Effect of layer thickness on the flexural property and microstructure of 3D-printed rhomboid polymer-reinforced cemented tailing composites, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 236.

    Article  Google Scholar 

  13. H.Q. Jiang, M. Fall, E. Yilmaz, Y.H. Li, and L. Yang, Effect of mineral admixtures on flow properties of fresh cemented paste backfill: Assessment of time dependency and thixotropy, Powder Technol., 372(2020), p. 258.

    Article  CAS  Google Scholar 

  14. E. Sadrossadat, H. Basarir, G.H. Luo, A. Karrech, R. Durham, A. Fourie, and M.Elchalakani, Multi-objective mixture design of cemented paste backfill using particle swarm optimisation algorithm, Miner. Eng., 153(2020), art. No. 106385.

  15. N.F. Liu, L. Cui, and Y. Wang, Analytical assessment of internal stress in cemented paste backfill, Adv. Mater. Sci. Eng., 2020(2020), art. No. 6666548.

  16. M. Fall and M. Pokharel, Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: Portland cement-paste backfill, Cem. Concr. Compos., 32(2010), No. 10, p. 819.

    Article  CAS  Google Scholar 

  17. S. Cao, W.D. Song, and E. Yilmaz, Influence of structural factors on uniaxial compressive strength of cemented tailings backfill, Constr. Build. Mater., 174(2018), p. 190.

    Article  Google Scholar 

  18. E. Yilmaz, T. Belem, and M. Benzaazoua, Specimen size effect on strength behavior of cemented paste backfills subjected to different placement conditions, Eng. Geol., 185(2015), p. 52.

    Article  Google Scholar 

  19. Y.R. Wang, H.J. Lu, and J. Wu, Experimental investigation on strength and failure characteristics of cemented paste backfill—rock composite under uniaxial compression, Constr. Build. Mater., 304(2021), art. No. 124629.

  20. M.L. Walske, H. McWilliam, J. Doherty, and A. Fourie, Influence of curing temperature and stress conditions on mechanical properties of cementing paste backfill, Can. Geotech. J., 53(2016), No. 1, p. 148.

    Article  CAS  Google Scholar 

  21. Z.M. Huang, Z.G. Ma, L. Zhang, P. Gong, Y.K. Zhang, and F. Liu, A numerical study of macro-mesoscopic mechanical properties of gangue backfill under biaxial compression, Int. J. Min. Sci. Technol., 26(2016), No. 2, p. 309.

    Article  Google Scholar 

  22. D. Martogi and S. Abedi, Microscale approximation of the elastic mechanical properties of randomly oriented rock cuttings, Acta Geotech., 15(2020), No. 12, p. 3511.

    Article  Google Scholar 

  23. X.S. Li, Y.C. Li, and S.S. Wu, Experimental investigation into the influences of weathering on the mechanical properties of sedimentary rocks, Geofluids, 2020(2020), art. No. 8893299.

  24. S. Durmaz and D. Ülgen, Prediction of earthquake-induced permanent deformations for concrete-faced rockfill dams, Nat. Hazards, 105(2021), No. 1, p. 587.

    Article  Google Scholar 

  25. M. Bost, H. Mouzannar, F. Rojat, G. Coubard, and J.P. Rajot, Metric scale study of the bonded concrete-rock interface shear behaviour, KSCE J. Civ. Eng., 24(2020), No. 2, p. 390.

    Article  Google Scholar 

  26. V.N. Aptukov and S.V. Volegov, Modeling concentration of residual stresses and damages in salt rock cores, J. Min. Sci., 56(2020), No. 3, p. 331.

    Article  Google Scholar 

  27. R.J. Clément, Z. Lun, and G. Ceder, Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes, Energy Environ. Sci., 13(2020), No. 2, p. 345.

    Article  Google Scholar 

  28. Q. Ma, Y.L. Tan, X.S. Liu, Q.H. Gu, and X.B. Li, Effect of coal thicknesses on energy evolution characteristics of roof rock—coal—floor rock sandwich composite structure and its damage constitutive model, Composites Part B, 198(2020), art. No. 108086.

  29. Y.R. Yang, X.P. Lai, P.F. Shan, and F. Cui, Comprehensive analysis of dynamic instability characteristics of steeply inclined coal-rock mass, Arab. J. Geosci., 13(2020), No. 6, art. No. 241.

  30. K. Wang, F. Du, X. Zhang, L. Wang, and C.P. Xin, Mechanical properties and permeability evolution in gas-bearing coal-rock combination body under triaxial conditions, Environ. Earth Sci., 76(2017), No. 24, art. No. 815.

  31. N.J.F. Koupouli, T. Belem, P. Rivard, and H. Effenguet, Direct shear tests on cemented paste backfill—rock wall and cemented paste backfill—backfill interfaces, J. Rock Mech. Geotech. Eng., 8(2016), No. 4, p. 472.

    Article  Google Scholar 

  32. Y. Zhang, Z.H. Zhang, L.J. Guo, and X.L. Du, Strength model of backfill—rock irregular interface based on fractal theory, Front. Mater., 8(2021), art. No. 792014.

  33. Z.G. Xiu, S.H. Wang, Y.C. Ji, F.L. Wang, F.Y. Ren, and V.T. Nguyen, The effects of dry and wet rock surfaces on shear behavior of the interface between rock and cemented paste backfill, Powder Technol., 381(2021), p. 324.

    Article  CAS  Google Scholar 

  34. N. Falaknaz, M. Aubertin, and L. Li, Numerical investigation of the geomechanical response of adjacent backfilled stopes, Can. Geotech. J., 52(2015), No. 10, p. 1507.

    Article  CAS  Google Scholar 

  35. W.B. Xu, Y. Cao, and B.H. Liu, Strength efficiency evaluation of cemented tailings backfill with different stratified structures, Eng. Struct., 180(2019), p. 18.

    Article  Google Scholar 

  36. W.L. Wu, W.B. Xu, and J.P. Zuo, Effect of inclined interface angle on shear strength and deformation response of cemented paste backfill—rock under triaxial compression, Constr. Build. Mater., 279(2021), art. No. 122478.

  37. C.A. Tang, and P.K. Kaiser, Numerical simulation of cumulative damage and seismic energy release during brittle rock failure—Part I: Fundamentals, Int. J. Rock Mech. Min. Sci., 35(1998), No. 2, p. 113.

    Article  Google Scholar 

  38. K. Ma, C.A. Tang, Z.Z. Liang, D.Y. Zhuang, and Q.B. Zhang, Stability analysis and reinforcement evaluation of high-steep rock slope by microseismic monitoring, Eng. Geol., 218(2017), p. 22.

    Article  Google Scholar 

  39. S.Y. Wang, S.W. Sloan, M.L. Huang, and C.A. Tang, Numerical study of failure mechanism of serial and parallel rock Pillars, Rock Mech. Rock Eng., 44(2011), No. 2, p. 179.

    Article  Google Scholar 

  40. P. Liang and H.J. Lu, Mechanical behaviour and failure characteristics of cemented paste backfill under lateral unloading condition, Int. J. Min. Miner. Eng., 11(2020), No. 1, art. No. 66.

  41. Z.Z. Liang, H. Xing, S.Y. Wang, D.J. Williams, and C.A. Tang, A three-dimensional numerical investigation of the fracture of rock specimens containing a pre-existing surface flaw, Comput. Geotech., 45(2012), p. 19.

    Article  Google Scholar 

  42. B.Q. Li and H.H. Einstein, Comparison of visual and acoustic emission observations in a four point bending experiment on barre granite, Rock Mech. Rock Eng., 50(2017), No. 9, p. 2277.

    Article  Google Scholar 

  43. C.A. Tang, H. Liu, P.K.K. Lee, Y. Tsui, and L. Tham, Numerical studies of the influence of microstructure on rock failure in uniaxial compression—Part I: Effect of heterogeneity, Int. J. Rock Mech. Min. Sci., 37(2000), No. 4, p. 555.

    Article  Google Scholar 

  44. W.C. Zhu and C.A. Tang, Micromechanical model for simulating the fracture process of rock, Rock Mech. Rock Eng., 37(2004), No. 1, p. 25.

    Article  Google Scholar 

  45. G. Li and C.A. Tang, A statistical meso-damage mechanical method for modeling trans-scale progressive failure process of rock, Int. J. Rock Mech. Min. Sci., 74(2015), p. 133.

    Article  Google Scholar 

  46. X.M. Wei, L.J. Guo, X.L. Zhou, C.H. Li, and L.X. Zhang, Full sequence stress evolution law and prediction model of high stage cemented backfill, Rock Soil Mech., 41(2020), No. 11, p. 3613.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51774137) and the Natural Science Foundation of Hebei Province, China (No. E2021209006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjian Lu.

Additional information

Conflict of Interest

The authors declare no potential conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Wang, Y., Gan, D. et al. Numerical investigation of the mechanical behavior of the backfill—rock composite structure under triaxial compression. Int J Miner Metall Mater 30, 802–812 (2023). https://doi.org/10.1007/s12613-022-2554-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2554-9

Keywords

Navigation