Skip to main content

Advertisement

Log in

Effects of ZnO, FeO and Fe2O3 on the spinel formation, microstructure and physicochemical properties of augite-based glass ceramics

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Augite-based glass ceramics were synthesised using ZnO, FeO, and Fe2O3 as additives, and the spinel formation, matrix structure, crystallisation thermodynamics, and physicochemical properties were investigated. The results showed that oxides resulted in numerous preliminary spinels in the glass matrix. FeO, ZnO, and Fe2O3 influenced the formation of spinel, while FeO simplified the glass network. FeO and ZnO promoted bulk crystallisation of the parent glass. After adding oxides, the grains of augite phase were refined, and the relative quantities of augite crystal planes were also influenced. All samples displayed good mechanical properties and chemical stability. The 2wt% ZnO-doping sample displayed the maximum flexural strength (170.3 MPa). Chromium leaching amount values of all the samples were less than the national standard (1.5 mg/L), confirming the safety of the materials. In conclusion, an appropriate amount of zinc-containing raw material is beneficial for the preparation of augite-based glass ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.V. DeCeanne, L.R. Rodrigues, C.J. Wilkinson, J.C. Wilkinson, and E.D. Wilkinson, Examining the role of nucleating agents within glass-ceramic systems, J. Non-Cryst. Solids., 591(2022), p. 121714.

    Article  CAS  Google Scholar 

  2. D. He, H. Ma, and H. Zhong, Effect of different nucleating agent ratios on the crystallization and properties of MAS glass ceramics, J. Eur. Ceram. Soc., 41(2021), No. 16, p. 342.

    Article  CAS  Google Scholar 

  3. J. Zhong, J. Zhang, Y. Yu, H. Bai, Z. Zhang, and Y. Huang, Transparent MgO—Al2O3—SiO2 glass-ceramics prepared with ZrO2 and SnO2 as nucleating agents, J. Non-Cryst. Solids., 588(2022), p. 121585.

    Article  Google Scholar 

  4. Z. Luo, H. Liang, C. Qin, T. Liu, and A. Liu, Crystallization kinetics and phase formation of Li2O-SiO2-Si3N4 glass-ceramics with P2O5 nucleating agent, J. Alloys Compd., 786(2022), p. 688.

    Article  Google Scholar 

  5. C. Wang, H. Jia, A. Wang, X. Wang, Y. Guo, and J. Zhang, Effect of TiO2 on the crystallization and properties of MgO—Al2O3—SiO2 glass-ceramics prepared by an “one-step” method from laterite ore, Ceram. Int., 45(2019), No. 4, p. 5133.

    Article  CAS  Google Scholar 

  6. L. Deng, R. Jia, F. Yun, X. Zhang, H. Li, M. Zhang, X. Jia, D. Ren, and B. Li, Influence of Cr2O3 on the viscosity and crystallization behavior of glass ceramics based on blast furnace slag, Mater. Chem. Phys., 240(2020), p. 122212.

    Article  CAS  Google Scholar 

  7. Y. Shi, X.W. Song, and X.X. Han, Catalytic mechanism of iron oxide doping on the crystallization process of Cr2O3-containg glass ceramics, J. Non Cryst. Solids., 570(2021), p. 121002.

    Article  CAS  Google Scholar 

  8. G.S. Back, M.J. Yoon, and W.G. Jung, Effect of the Cr2O3 and TiO2 as nucleating agents in SiO2—Al2O3—CaO—MgO glass-ceramic system, Met. Mater. Int., 23(2017), p. 798.

    Article  CAS  Google Scholar 

  9. G.A. Khater, Influence of Cr2O3, LiF, CaF2 and TiO2 nucleants on the crystallization behavior and microstructure of glass-ceramics based on blast-furnace slag, Ceram. Int., 37(2011), No. 7, p. 2193.

    Article  CAS  Google Scholar 

  10. S. Zhang, Y.L. Zhang, and Z.M. Qu, Effect of soluble Cr2O3 on the silicate network, crystallization kinetics, mineral phase, microstructure of CaO—MgO—SiO2—(Na2O) glass ceramics with different CaO/MgO ratio, Ceram. Int., 45(2019), No. 9, p. 11216.

    Article  CAS  Google Scholar 

  11. Y. Shi, B.W. Li, M. Zhao, and M.X. Zhang, Growth of diopside crystals in CMAS glass-ceramics using Cr2O3 as a nucleating agent, J. Am. Ceram. Soc., 101(2018), No. 9, p. 3968.

    Article  CAS  Google Scholar 

  12. S. Zhang, Y.L. Zhang, J.T. Gao, Z.M. Qu, and Z. Zhang, Effects of Cr2O3 and CaF2 on the structure, crystal growth behavior, and properties of augite-based glass ceramics, J. Eur. Ceram. Soc., 39(2019), No. 14, p. 4283.

    Article  CAS  Google Scholar 

  13. M.C. Kemei, P.T. Barton, S.L. Moffitt, et al., Crystal structures of spin-Jahn—Teller-ordered MgCr2O4 and ZnCr2O4, J. Phys.: Condens. Matter, 25(2013), No. 32, art. No. 326001.

  14. M. Robbins, G.K. Wertheim, R.C. Sherwood, and D.N.E. Buchanan, Magnetic properties and site distributions in the system \({\rm{FeC}}{{\rm{r}}_2}{{\rm{O}}_4} - {\rm{F}}{{\rm{e}}_3}{{\rm{O}}_4}({\rm{F}}{{\rm{e}}^{2 + }}{\rm{C}}{{\rm{r}}_{2 - x}}{\rm{Fe}}_x^{3 + }{{\rm{O}}_4})\), J. Phys. Chem. Solids, 32(1971), No. 3, p. 717.

    Article  CAS  Google Scholar 

  15. M.Z. Zhao, J.W. Cao, Z. Wang, and G.H. Li, Precipitating spinel into precursor glass and its assistance in crystallization, J. Eur. Ceram. Soc., 39(2019), No. 7, p. 2427.

    Article  CAS  Google Scholar 

  16. J.L. Li, A.J. Xu, D.F. He, Q.X. Yang, and N.Y. Tian, Effect of FeO on the formation of spinel phases and chromium distribution in the CaO—SiO2—MgO—Al2O3—Cr2O3 system, Int. J. Miner. Metall. Mater., 20(2013), No. 3, p. 253.

    Article  CAS  Google Scholar 

  17. T. Wu, Y. Zhang, F. Yuan, and Z. An, Effects of the Cr2O3 content on the viscosity of CaO—SiO2—10 Pct Al2O3—Cr2O3 quaternary slag, Metall. Mater. Trans. B., 49(2018), p. 1719.

    Article  CAS  Google Scholar 

  18. Q. Li, J. Gao, Y. Zhang, Z. An, and Z. Guo, Viscosity measurement and structure analysis of Cr2O3-bearing CaO—SiO2—MgO—Al2O3 slags, Metall. Mater. Trans. B., 48(2017), p. 346.

    Article  CAS  Google Scholar 

  19. Q. Li, S. Yang, Y. Zhang, Z. An, and Z. Guo, Effects of MgO, Na2O, and B2O3 on the viscosity and structure of Cr2O3-bearing CaO—SiO2—Al2O3 slags, ISIJ. Int., 57(2017), No. 4, p. 689.

    Article  CAS  Google Scholar 

  20. S. Zhang, Y. Zhang, S. Wu, Z. Zhao, and Y. Wu, Long-term leaching mechanism of chromium-containing slag after vitrification and heat treatment, Ceram. Int., 48(2022), No. 9, p. 13366.

    Article  CAS  Google Scholar 

  21. F. Yuan, Z. Yuan, Y. Zhang, and T. Wu, Effect of Al2O3 content on the viscosity and structure of CaO—SiO2—Cr2O3—Al2O3 slags, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1522.

    Article  CAS  Google Scholar 

  22. Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, Influence of basicity and FeO content on viscosity of blast furnace type slags containing FeO, ISIJ Int., 44(2004), No. 8, p. 1283.

    Article  CAS  Google Scholar 

  23. Z.W. Wang, P. Lazor, S.K. Saxena, and G. Artioli, High-pressure Raman spectroscopic study of spinel (ZnCr2O4), J. Solid State Chem., 165(2002), No. 1, p. 165.

    Article  CAS  Google Scholar 

  24. W.J. Yong, S. Botis, S.R. Shieh, W.G. Shi, and A.C. Withers, Pressure-induced phase transition study of magnesiochromite (MgCr2O4) by Raman spectroscopy and X-ray diffraction, Phys. Earth Planet. Inter., 196–197(2012), p. 75.

    Article  Google Scholar 

  25. K.F. McCarty and D.R. Boehme, A Raman study of the systems Fe3−xCrxO4 and Fe2−xCrxO3, J. Solid State Chem., 79(1989), No. 1, p. 19.

    Article  CAS  Google Scholar 

  26. W. Li, C. Deng, Y. Chen, X. Wang, C. Yu, J. Ding, and H. Zhu, Application of Cr3C2/C composite powders synthesized via molten-salt method in low-carbon MgO—C refractories, Ceram. Int., 48(2022), No. 11, p. 15227.

    Article  CAS  Google Scholar 

  27. J. Yang, B. Liu, S.G. Zhang, and A.A. Volinsky, Glass-ceramics one-step crystallization accomplished by building Ca2+ and Mg2+ fast diffusion layer around diopside crystal, J. Alloys Compd., 688(2016), p. 709.

    Article  CAS  Google Scholar 

  28. N. Saheb, S. Lamara, F. Lamara, and S.F. Hassan, Kinetics of α-cordierite formation from nano-oxide powders, Ceram. Int., 48(2022), No. 16, p. 23921.

    Article  CAS  Google Scholar 

  29. Y. Li, D. Cao, Y. Zhang, and X. Jia, Performance of a drymethod-epoxy modifier and a modified epoxy-asphalt mixture, Constr. Build. Mater., 266(2021), p. 120229.

    Article  CAS  Google Scholar 

  30. J.A. Augis and J.E. Bennett, Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method, J. Therm. Anal., 13(1978), No. 2, p. 283.

    Article  CAS  Google Scholar 

  31. A. Karamanov and M. Pelino, Crystallization phenomena in iron-rich glasses, J. Non Cryst. Solids, 281(2001), No. 1–3, p. 139.

    Article  CAS  Google Scholar 

  32. M.R. Boudchicha, F. Rubio, and S. Achour, Synthesis of glass ceramics from Kaolin and dolomite mixture, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 194.

    Article  CAS  Google Scholar 

  33. H.P. Liu, X.F. Huang, L.P. Ma, D.L. Chen, Z.B. Shang, and M. Jiang, Effect of Fe2O3 on the crystallization behavior of glass-ceramics produced from naturally cooled yellow phosphorus furnace slag, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 316.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2019YFC1905701), the National Natural Science Foundation of China (Nos. U1960201 and 52204336), and the China Postdoctoral Science Foundation (No. 2022M710359).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanling Zhang.

Additional information

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhang, Y. & Wu, S. Effects of ZnO, FeO and Fe2O3 on the spinel formation, microstructure and physicochemical properties of augite-based glass ceramics. Int J Miner Metall Mater 30, 1207–1216 (2023). https://doi.org/10.1007/s12613-022-2489-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2489-1

Keywords

Navigation