Skip to main content
Log in

Effect of thermomechanical cyclic quenching and tempering treatments on microstructure, mechanical and electrochemical properties of AISI 1345 steel

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Thermomechanical cyclic quenching and tempering (TMCT) can strengthen steels through a grain size reduction mechanism. The effect of TMCT on microstructure, mechanical, and electrochemical properties of AISI 1345 steel was investigated. Steel samples heated to 1050°C, rolled, quenched to room temperature, and subjected to various cyclic quenching and tempering heat treatments were named TMCT-1, TMCT-2, and TMCT-3 samples, respectively. Microstructure analysis revealed that microstructures of all the treated samples contained packets and blocks of well-refined lath-shaped martensite and retained austenite phases with varying grain sizes (2.8–7.9 µm). Among all the tested samples, TMCT-3 sample offered an optimum combination of properties by showing an improvement of 40% in tensile strength and reduced 34% elongation compared with the non-treated sample. Nanoindentation results were in good agreement with mechanical tests as the TMCT-3 sample exhibited a 51% improvement in indentation hardness with almost identical reduced elastic modulus compared with the non-treated sample. The electrochemical properties were analyzed in 0.1 M NaHCO3 solution by potentiodynamic polarization and electrochemical impedance spectroscopy. As a result of TMCT, the minimum corrosion rate was 0.272 mm/a, which was twenty times less than that of the non-treated sample. The impedance results showed the barrier film mechanism, which was confirmed by the polarization results as the current density decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Tomita, Development of fracture toughness of ultrahigh strength, medium carbon, low alloy steels for aerospace applications, Int. Mater. Rev., 45(2000), No. 1, p. 27.

    CAS  Google Scholar 

  2. Y. Tomita and K. Okabayashi, Modified heat treatment for lower temperature improvement of the mechanical properties of two ultrahigh strength low alloy steels, Metall. Trans. A, 16(1985), No. 1, p. 83.

    Google Scholar 

  3. Y.Q. Weng, Ultra-Fine Grained Steels, Metallurgical Industry Press, Beijing and Springer, Berlin, Heidelberg, 2009, p. 300.

    Google Scholar 

  4. S. Kim, S. Lee, and B.S. Lee, Effects of grain size on fracture toughness in transition temperature region of Mn-Mo-Ni low-alloy steels, Mater. Sci. Eng. A, 359(2003), No. 1–2, p. 198.

    Google Scholar 

  5. M. Eskandari, A. Kermanpur, and A. Najafizadeh, Formation of nano-grained structure in a 301 stainless steel using a repetitive thermo-mechanical treatment, Mater. Lett., 63(2009), No. 16, p. 1442.

    CAS  Google Scholar 

  6. P. Prakash, J. Vanaja, N. Srinivasan, P. Parameswaran, G.V.S.N. Rao, and K. Laha, Effect of thermo-mechanical treatment on tensile properties of reduced activation ferritic-martensitic steel, Mater. Sci. Eng. A, 724(2018), p. 171.

    CAS  Google Scholar 

  7. S.Z. Li, Z. Eliniyaz, F. Sun, Y.Z. Shen, L.T. Zhang, and A.D. Shan, Effect of thermo-mechanical treatment on microstructure and mechanical properties of P92 heat resistant steel, Mater. Sci. Eng. A, 559(2013), p. 882.

    CAS  Google Scholar 

  8. H. Oka, T. Tanno, S. Ohtsuka, Y. Yano, T. Uwaba, T. Kaito, and M. Ohnuma, Effect of thermo-mechanical treatments on nano-structure of 9Cr-ODS steel, Nucl. Mater. Energy, 9(2016), p. 346.

    Google Scholar 

  9. C.Y. Lee, C.S. Yoo, A. Kermanpur, and Y.K. Lee, The effects of multi-cyclic thermo-mechanical treatment on the grain refinement and tensile properties of a metastable austenitic steel, J. Alloys Compd., 583(2014), p. 357.

    CAS  Google Scholar 

  10. J. Liu, H. Yu, T. Zhou, C.H. Song, and K. Zhang, Effect of double quenching and tempering heat treatment on the microstructure and mechanical properties of a novel 5Cr steel processed by electro-slag casting, Mater. Sci. Eng. A, 619(2014), p. 212.

    CAS  Google Scholar 

  11. P. Prakash, J. Vanaja, D.P.R. Palaparti, G.V.P. Reddy, K. Laha, and G.V.S.N. Rao, Tensile flow and work hardening behavior of reduced activation ferritic martensitic steel subjected to thermo-mechanical treatment, J. Nucl. Mater., 520(2019), p. 19.

    CAS  Google Scholar 

  12. M.H.K. Sanij, S.S.G. Banadkouki, A.R. Mashreghi, and M. Moshrefifar, The effect of single and double quenching and tempering heat treatments on the microstructure and mechanical properties of AISI 4140 steel, Mater. Des., 42(2012), p. 339.

    Google Scholar 

  13. P. Ganesh, A.V. Kumar, C. Thinaharan, N.G. Krishna, R.P. George, N. Parvathavarthini, S.K. Rai, R. Kaul, U.K. Mudali, and L.M. Kukreja, Enhancement of intergranular corrosion resistance of type 304 stainless steel through a novel surface thermo-mechanical treatment, Surf. Coat. Technol., 232(2013), p. 920.

    CAS  Google Scholar 

  14. A. Ghosh and M. Ghosh, Tensile and impact behaviour of thermo mechanically treated and micro-alloyed medium carbon steel bar, Constr. Build. Mater., 192(2018), p. 657.

    CAS  Google Scholar 

  15. L. Kučerová and M. Bystrianský, Comparison of thermo-mechanical treatment of C-Mn-Si-Nb and C-Mn-Si-Al-Nb TRIP steels, Procedia Eng., 207(2017), p. 1856.

    Google Scholar 

  16. M.A. Hafeez, A. Inam, and A. Farooq, Mechanical and corrosion properties of medium carbon low alloy steel after cyclic quenching and tempering heat-treatments, Mater. Res. Express, 7(2020), No. 1, art. No. 016553.

  17. K.P. Balan, A.V. Reddy, and D.S. Sarma, Effect of single and double austenitization treatments on the microstructure and mechanical properties of 16Cr-2Ni Steel, J. Mater. Eng. Perform., 8(1999), No. 3, p. 385.

    CAS  Google Scholar 

  18. E. Chang, C.Y. Chang, and C.D. Liu, The effects of double austenitization on the mechanical properties of a 0.34C containing low-alloy Ni-Cr-Mo-V steel, Metall. Mater. Trans. A, 25(1994), No. 3, p. 545.

    Google Scholar 

  19. C. Pandey, M.M. Mahapatra, P. Kumar, P. Kumar, N. Saini, J.G. Thakare, and S. Kumar, Study on effect of double austenitization treatment on fracture morphology tensile tested nuclear grade P92 steel, Eng. Fail. Anal., 96(2019), p. 158.

    CAS  Google Scholar 

  20. S. Salunkhe, D. Fabijanic, J. Nayak, and P. Hodgson, Effect of single and double austenitization treatments on the microstructure and hardness of AISI D2 tool steel, Mater. Today: Proc., 2(2015), No. 4–5, p. 1901.

    Google Scholar 

  21. M.A. Hafeez, A. Inam, M.U. Hassan, M.A. Umer, M. Usman, and A. Hanif, Optimized corrosion performance of AISI 1345 steel in hydrochloric acid through thermos-mechanical cyclic annealing processes, Crystals, 10(2020), No. 4, p. 265.

    CAS  Google Scholar 

  22. Z.X. Cao, Z.Y. Shi, F. Yu, K. Sugimoto, W.Q. Cao, and Y.Q. Weng, Effects of double quenching on fatigue properties of high carbon bearing steel with extra-high purity, Int. J. Fatigue, 128(2019), art. No. 105176.

  23. Y. Zhang, C. Yu, T. Zhou, D.W. Liu, X.W. Fang, H.P. Li, and J.P. Suo, Effects of Ti and a twice-quenching treatment on the microstructure and ductile brittle transition temperature of 9CrWVTiN steels, Mater. Des., 88(2015), p. 675.

    CAS  Google Scholar 

  24. X.S. Xiong, F. Yang, X.R. Zou, and J.P. Suo, Effect of twice quenching and tempering on the mechanical properties and microstructures of SCRAM steel for fusion application, J. Nucl. Mater., 430(2012), No. 1–3, p. 114.

    CAS  Google Scholar 

  25. J.G. Gonzalez-Rodriguez, M. Casales, V.M. Salinas-Bravo, J.L. Albarran, and L. Martinez, Effect of microstructure on the stress corrosion cracking of X-80 pipeline steel in diluted sodium bicarbonate solutions, Corrosion, 58(2002), No. 7, p. 584.

    CAS  Google Scholar 

  26. M.H. Nazari, S.R. Allahkaram, and M.B. Kermani, The effects of temperature and pH on the characteristics of corrosion product in CO2 corrosion of grade X70 steel, Mater. Des., 31(2010), No. 7, p. 3559.

    CAS  Google Scholar 

  27. S.J. Harjac, A. Atrens, C.J. Moss, and V. Linton, Influence of solution chemistry and surface condition on the critical inhibitor concentration for solutions typical of hot potassium carbonate CO2 removal plant, J. Mater. Sci., 42(2007), No. 18, p. 7762.

    CAS  Google Scholar 

  28. S. Nešić, Key issues related to modelling of internal corrosion of oil and gas pipelines-A review, Corros. Sci., 49(2007), No. 12, p. 4308.

    Google Scholar 

  29. F.M. Al-Kharafi, B.G. Ateya, and R.M. Abdallah, Electrochemical behaviour of low carbon steel in concentrated carbonate chloride brines, J. Appl. Electrochem., 32(2002), No. 12, p. 1363.

    CAS  Google Scholar 

  30. M. Attarchi, M. Mazloumi, S.K. Sadrnezhaad, A. Jafari, and M. Asadi, Formation and rupture of carbonate film: An electrochemical noise approach, Anti-Corros. Methods Mater., 56(2009), No. 2, p. 103.

    CAS  Google Scholar 

  31. S. Simard, H. Menard, and L. Brossard, Localized corrosion of 1024 mild steel in slightly alkaline bicarbonate solution with Cl ions, J. Appl. Electrochem., 28(1998), No. 2, p. 151.

    CAS  Google Scholar 

  32. S. Simard, M. Odziemkowski, D.E. Irish, L. Brossard, and H. Ménard, In situ micro-Raman spectroscopy to investigate pitting corrosion product of 1024 mild steel in phosphate and bicarbonate solutions containing chloride and sulfate ions, J. Appl. Electrochem., 31(2001), No. 8, p. 913.

    CAS  Google Scholar 

  33. J.Q. Wang and A. Atrens, SCC initiation for X65 pipeline steel in the “high” pH carbonate/bicarbonate solution, Corros. Sci., 45(2003), No. 10, p. 2199.

    CAS  Google Scholar 

  34. A.A. Oskuie, T. Shahrabi, A. Shahriari, and E. Saebnoori, Electrochemical impedance spectroscopy analysis of X70 pipeline steel stress corrosion cracking in high pH carbonate solution, Corros. Sci., 61(2012), p. 111.

    CAS  Google Scholar 

  35. F.F. Eliyan, E.S. Mahdi, and A. Alfantazi, Electrochemical evaluation of the corrosion behaviour of API-X100 pipeline steel in aerated bicarbonate solutions, Corros. Sci., 58(2012), p. 181.

    CAS  Google Scholar 

  36. J.B. Han, B.N. Brown, D. Young, and S. Nešić, Mesh-capped probe design for direct pH measurements at an actively corroding metal surface, J. Appl. Electrochem., 40(2010), No. 3, p. 683.

    CAS  Google Scholar 

  37. A. Farooq, A.A. Alvi, A.M.H. Alvi, K.M. Deen, and A. Tariq, Effect of post weld heat treatment on the electrochemical behavior of API X-65 welded pipeline in bicarbonates solutions, [in] Conference Proceeding: NACE Northern Area Western Conference, Calgary, Alberta, 2019, p. 683.

  38. A. Inam, Y. Imtiaz, M.A. Hafeez, S. Munir, Z. Ali, M. Ishtiaq, M.H. Hassan, A. Maqbool, and W. Haider, Effect of tempering time on microstructure, mechanical, and electrochemical properties of quenched-partitioned-tempered advanced high strength steel (AHSS), Mater. Res. Express, 6(2019), art. No. 126509.

  39. M.A. Hafeez, Investigation on mechanical properties and immersion corrosion performance of 0.35%C–10.5%Mn steel processed by austenite reverted transformation (ART) annealing process, Metall. Microstruct. Anal., 9(2020), p. 159.

    CAS  Google Scholar 

  40. C. Liu, Z.B. Zhao, D.O. Northwood, and Y.X. Liu, A new empirical formula for the calculation of MS temperatures in pure iron and super-low carbon alloy steels, J. Mater. Process. Technol., 113(2001), No. 1–3, p. 556.

    CAS  Google Scholar 

  41. Y.P. Zhang, D.P. Zhan, X.W. Qi, Z.H. Jiang, and H.S. Zhang, Microstructure and mechanical properties of Cr14 ultra-high-strength steel at different tempering temperatures around 773 K, Mater. Sci. Eng. A, 698(2017), p. 152.

    CAS  Google Scholar 

  42. W.D. Callister Jr. and D.G. Rethwisch, Material Science and Engineering: An Introduction, 8th ed., John Wiley and Sons, New Jersey, Hoboken, 2009.

    Google Scholar 

  43. G.E. Dieter, Mechanical Metallurgy, 3rd ed., McGraw-Hill-Book Co., New York, 1986.

    Google Scholar 

  44. M.A. Hafeez and A. Farooq, Microstructural, mechanical and tribological investigation of 30CrMnSiNi2A ultra-high strength steel under various tempering temperatures, Mater. Res. Express, 5(2018), No. 1, art. No. 016505.

  45. M.A. Hafeez, Effect of microstructural transformation during tempering on mechanical properties of quenched and tempered 38CrSi steel, Mater. Res. Express, 6(2019), No. 8, art. No. 086552.

  46. M.A. Hafeez, A. Inam, and M.A. Arshad, Investigation on microstructural, mechanical, and electrochemical properties of water, brine quenched and tempered low carbon steel, Mater. Res. Express, 6(2019), No. 9, art. No. 096524.

  47. M.A. Hafeez and A. Farooq, Effect of heat treatments on the mechanical and electrochemical behavior of 38CrSi and AISI 4140 steels, Metall. Microstruct. Anal., 8(2019), No. 4, p. 479.

    CAS  Google Scholar 

  48. M.A. Hafeez and A. Farooq, Effect of quenching baths on microstructure and hardness of AISI1035 steel, Niger. J. Technol. Res., 13(2018), No. 1, p. 82.

    Google Scholar 

  49. M.A. Hafeez, M. Usman, M.A. Arshad, and M.A. Umer, Nanoindentation-based micro-mechanical and electrochemical properties of quench-hardened, tempered low-carbon steel, Crystals, 10(2020), No. 6, p. 508.

    Google Scholar 

  50. B.V.N. Rao and G. Thomas, Structure-property relations and the design of Fe-4Cr-C base structural steels for high strength and toughness, Metall. Trans. A, 11(1980), p. 441.

    Google Scholar 

  51. W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7(1992), No. 6, p. 1564.

    CAS  Google Scholar 

  52. G. Guillonneau, G. Kermouche, S. Bec, and J.-L. Loubet, Determination of mechanical properties by nanoindentation independently of indentation depth measurement, J. Mater. Res., 27(2012), No. 19, p. 2551.

    CAS  Google Scholar 

  53. L. Hao, S.X. Zhang, J.H. Dong, and W. Ke, Evolution of corrosion of MnCuP weathering steel submitted to wet/dry cyclic tests in a simulated coastal atmosphere, Corros. Sci., 58(2012), p. 175.

    CAS  Google Scholar 

  54. S.I. Hirnyi, Anodic hydrogenation of iron in a carbonate-bicarbonate solution, Mater. Sci., 37(2001), No. 3, p. 491.

    CAS  Google Scholar 

  55. D.H. Davies and G.T. Burstein, The effects of bicarbonate on the corrosion and passivation of iron, Corrosion, 36(1980), No. 8, p. 416.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameeq Farooq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafeez, M.A., Farooq, A., Tayyab, K.B. et al. Effect of thermomechanical cyclic quenching and tempering treatments on microstructure, mechanical and electrochemical properties of AISI 1345 steel. Int J Miner Metall Mater 28, 688–698 (2021). https://doi.org/10.1007/s12613-020-2139-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2139-4

Keywords

Navigation