Skip to main content
Log in

Adsorption of Ag on M-doped graphene: First principle calculations

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Graphene is an ideal reinforcing phase for a high-performance composite filler, which is of great theoretical and practical significance for improving the wettability and reliability of the filler. However, the poor adsorption characteristics between graphene and the silver base filler significantly affect the application of graphene filler in the brazing field. It is a great challenge to improve the adsorption characteristics between a graphene and silver base filler. To solve this issue, the adsorption characteristic between graphene and silver was studied with first principle calculation. The effects of Ga, Mo, and W on the adsorption properties of graphene were explored. There are three possible adsorbed sites, the hollow site (H), the bridge site (B), and the top site (T). Based on this research, the top site is the most preferentially adsorbed site for Ag atoms, and there is a strong interaction between graphene and Ag atoms. Metal element doping enhances local hybridization between C or metal atoms and Ag. Furthermore, compared with other doped structures (Ga and Mo), W atom doping is the most stable adsorption structure and can also improve effective adsorption characteristic performance between graphene and Ag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ntasi, Y. Al Jabbari, W.D. Mueller, G. Eliades, and S. Zinelis, Metallurgical and electrochemical characterization of contemporary silver-based soldering alloys, Angle Orthodontist, 84(2014), No. 3, p. 508.

    Article  Google Scholar 

  2. F.L. Zou, J.H. Hu, S.Y. Huang, Y. Lei, M.C. Zhou, and Z.K. Xu, Preparation of silver-based solder foils by low-voltage magnetic pulsed compaction, Emerg. Mater. Res., 5(2016), No. 2, p. 221.

    Google Scholar 

  3. A. Khorram and M. Ghoreishi, Comparative study on laser brazing and furnace brazing of Inconel 718 alloys with silver based filler metal, Opt. Laser Technol., 68(2015), p. 165.

    Article  CAS  Google Scholar 

  4. Y. Chen, D. Yun, F. Sui, W. Long, G. Zhang, and S. Liu, Influence of sulphur on the microstructure and properties of Ag-Cu-Zn brazing filler metal, Mater. Sci. Technol., 29(2013), No. 10, p. 1267.

    Article  CAS  Google Scholar 

  5. F.F. Sui, W.M. Long, S.X. Liu, G.X. Zhang, L. Bao, H. Li, and Y. Chen, Effect of calcium on the microstructure and mechanical properties of brazed joint using Ag-Cu-Zn brazing filler metal, Mater. Des., 46(2013), p. 605.

    Article  CAS  Google Scholar 

  6. K. Demianová, M. Behúlová, O. Milan, M. Turňa, and M. Sahul, Brazing of aluminum tubes using induction heating, Adv. Mater. Res., 463–464(2012), p. 1405.

    Article  Google Scholar 

  7. T.O. Wehling, M.I. Katsnelson, and A.I. Lichtenstein, Adsorbates on graphene: impurity states and electron scattering, Chem. Phys. Lett., 476(2009), No. 4–6, p. 125.

    Article  CAS  Google Scholar 

  8. A.Z. Alzahrani, First-principles study on the structural and electronic properties of graphene upon benzene and naphthalene adsorption, Appl. Surf. Sci., 257(2010), No. 3, p. 807.

    Article  CAS  Google Scholar 

  9. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438(2005), p. 197.

    Article  CAS  Google Scholar 

  10. X.R. Song, H.J. Li, and X.R. Zeng, Brazing of C/C composites to Ti6Al4V using multiwall carbon nanotubes reinforced TiC-uZrNi brazing alloy, J. Alloys Compd., 664(2016), p. 175.

    Article  CAS  Google Scholar 

  11. W. Xin, W.Y. Xing, Z. Ping, S. Lei, H.Y. Yang, and H. Yuan, Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites, Compos. Sci. Technol., 72(2012), No. 6, p. 737.

    Article  Google Scholar 

  12. J.L. Qi, Z.Y. Wang, J.H. Lin, T.Q. Zhang, A.T. Zhang, J. Cao, L.X. Zhang, and J.C. Feng, Graphene-enhanced Cu composite interlayer for contact reaction brazing aluminum alloy 6061, Vacuum, 136(2017), p. 142.

    Article  CAS  Google Scholar 

  13. K. Chang and W.X. Chen, L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries, ACS Nano, 5(2011), No. 6, p. 4720.

    Article  CAS  Google Scholar 

  14. V. Thirumal, A. Pandurangan, R. Jayavel, and R. Ilangovan, Synthesis and characterization of boron doped graphene nanosheets for supercapacitor applications, Synth. Met., 220(2016), p. 524.

    Article  CAS  Google Scholar 

  15. Z. Cai, H.Z. Xiong, Z.N. Zhu, H.B. Huang, L. Li, Y.N. Huang, and X.H. Yu, Electrochemical synthesis of graphene/polypyrrole nanotube composites for multifunctional applications, Synth. Met., 227(2017), p. 100.

    Article  CAS  Google Scholar 

  16. F. Chen, N. Gupta, R.K. Behera, and P.K. Rohatgi, Graphene-reinforced aluminum matrix composites: a review of synthesis methods and properties, JOM, 70(2018), No. 6, p. 837.

    Article  CAS  Google Scholar 

  17. S.R. Wang, Y. Zhang, N. Abidi, and L. Cabrales, Wettability and surface free energy of graphene films, Langmuir, 25(2009), No. 18, p. 11078.

    Article  CAS  Google Scholar 

  18. J. Ma, A. Michaelides, D. Alfe, L. Schimka, G. Kresse, and E.G. Wang, Adsorption and diffusion of water on graphene from first principles, Phys. Rev. B, 84(2011), No. 3, art. No. 033402.

  19. J. Kysilka, M. Rubeš, L. Grajciar, P. Nachtigall, and O. Bludský, Accurate description of argon and water adsorption on surfaces of graphene-based carbon allotropes, J. Phys. Chem. A, 115(2011), No. 41, p. 11387.

    Article  CAS  Google Scholar 

  20. J.H. Cao, Y. Liu, and X.S. Ning, Influence of AlN (0001) surface reconstructions on the wettability of an Al/AlN system: A first-principle study, Materials, 11(2018), No. 5, p. 775.

    Article  Google Scholar 

  21. P. Bloński and M. Otyepka, First-principles study of the mechanism of wettability transition of defective graphene, Nanotechnology, 28(2017), No. 6, art. No. 064003.

  22. A. Ashraf, Y.B. Wu, M.C. Wang, K. Yong, T. Sun, Y.H. Jing, R.T. Haasch, N.R. Aluru, and S. Nam, Doping-induced tunable wettability and adhesion of graphene, Nano Lett., 16(2016), No. 7, p. 4708.

    Article  CAS  Google Scholar 

  23. D.Z. Fan, G.L. Liu, and S. Zhou, Effects of vacancy and deformation on an Al atom adsorbed on graphene, Chin. J. Phys., 56(2018), No. 2, p. 689.

    Article  CAS  Google Scholar 

  24. Y. Liu, L.B. An, and L. Gong, First-principles study of Cu adsorption on vacancy-defected/Au-doped graphene, Mod. Phys. Lett. B, 32(2018), No. 11, p. 1850139.

    Article  CAS  Google Scholar 

  25. Y.L. He, D.X. Liu, Y. Qu, and Z. Yao, Adsorption of hydrogen molecule on the intrinsic and Al-doped graphene: A first principle study, Adv. Mater. Res., 507(2012), p. 61.

    Article  CAS  Google Scholar 

  26. X.Y. Xu, J. Li, H.Y. Xu, X.F. Xu, and C.Y. Zhao, DFT investigation of Ni-doped graphene: Catalytic ability to CO oxidation, New J. Chem., 40(2016), No. 11, p. 9361.

    Article  CAS  Google Scholar 

  27. C.L. M, S.B. Xue, and B. Wang, Study on novel Ag-Cu-Zn-Sn brazing filler metal bearing Ga, J. Alloys Compd., 688(2016), p. 854.

    Article  Google Scholar 

  28. J.Y. Liu, T.P. Wang, C.F. Liu, and T.P. Zhang, Microstructure and mechanical properties of porous Si3N4/Invar joints brazed with Ag-Cu-Ti+Mo/Cu/Ag-Cu multi-layered composite filler, Ceram. Int., 43(2017), No. 15, p. 11668.

    Article  CAS  Google Scholar 

  29. J. Zhang, J.Y. Liu, and T.P. Wang, Microstructure and brazing mechanism of porous Si3N4/Invar joint brazed with Ag-Cu-Ti/Cu/Ag-Cu multi-layered filler, J. Mater. Sci. Technol., 34(2018), No. 4, p. 713.

    Article  Google Scholar 

  30. Z.W. Yang, J.M. Lin, Y. Wang, and D.P. Wang, Characterization of microstructure and mechanical properties of Al2O3/TiAl joints vacuum-brazed with Ag-Cu-Ti plus W composite filler, Vacuum, 143(2017), p. 294.

    Article  CAS  Google Scholar 

  31. K.S. Novoselov, D. Jiang, T. Booth, V.V. Khotkevich, S.M. Morozov, and A.K. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. US, 102(2005), No. 30, p. 10451.

    Article  CAS  Google Scholar 

  32. S.V. Morozov, K.S. Novoselov, F. Schedin, D. Jiang, A.A. Firsov, and A.K. Geim, Two dimensional electron and hole gases at the surface of graphite, Phys. Rev. B, 72(2005), No. 20, art. No. 201401.

  33. J.M. Carlsson and M. Scheffler, Structural, electronic, and chemical properties of nanoporous carbon, Phys. Rev. Lett., 96(2006), No. 4, p. 46806.

    Article  Google Scholar 

  34. V. Milman, K. Refson, S.J. Clark, C.J. Pickard, J.R. Yates, S.P. Gao, P.J. Hasnip, M.I.J. Probert, A. Perlov, and M.D. Segall, Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation, J. Mol. Struct. THEOCHEM, 954(2010), No. 1–3, p. 22.

    Article  CAS  Google Scholar 

  35. A.D. Becke, A new mixing of Hartree-Fock and local density-functional theories, J. Chem. Phys., 98(1993), No. 2, p. 1372.

    Article  CAS  Google Scholar 

  36. R. Car and M. Parrinello, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett., 55(1985), No. 22, p. 2471.

    Article  CAS  Google Scholar 

  37. L.H. Yuan, D.B. Wang, J.J. Gong, C.R. Zhang, M.L. Zhang, X.J. Wu, and L. Kang, First-principles study of V-decorated porous graphene for hydrogen storage, Chem. Phys. Lett., 726(2019), p. 57.

    Article  CAS  Google Scholar 

  38. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 46(1992), No. 11, p. 6671.

    Article  CAS  Google Scholar 

  39. J.P. Perdew, K. Burke, and Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B, 54(1996), No. 23, p. 16533.

    Article  CAS  Google Scholar 

  40. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865.

    Article  CAS  Google Scholar 

  41. Z.Q. Zheng and H.L. Wang, Different elements doped graphene sensor for CO2 greenhouse gases detection: the DFT study, Chem. Phys. Lett., 721(2019), p. 33.

    Article  CAS  Google Scholar 

  42. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 41(1990), No. 11, p. 7892.

    Article  CAS  Google Scholar 

  43. R. Muhammad, Y. Shuai, and H.P. Tan, First-principles study on hydrogen adsorption on nitrogen doped graphene, Physica E, 88(2017), p. 115.

    Article  CAS  Google Scholar 

  44. J. Granatier, P. Lazar, R. Prucek, K. Šafářová, R. Zbořil, M. Otyepka, and P. Hobza, Interaction of graphene and arenes with noble metals, J. Phys. Chem. C, 116(2012), No. 26, p. 14151.

    Article  CAS  Google Scholar 

  45. M. Amft, S. Lebègue, O. Eriksson, and N.V. Skorodumova, Adsorption of Cu. Ag, and Au atoms on graphene including van der Waals interactions, J. Phys. Condens. Matter, 23(2011), No. 39, p. 395001.

    Article  Google Scholar 

  46. T.L. Pham, P.V. Dung, A. Sugiyama, N.D. Duc, T. Shimoda, A. Fujiwara, and D.H. Chi, First principles study of the physisorption of hydrogen molecule on graphene and carbon nanotube surfaces adhered by Pt atom, Comput. Mater. Sci., 49(2010), No. 1, p. S15.

    Article  CAS  Google Scholar 

  47. Y. Pan and S.L. Wang, Insight into the oxidation mechanism of MoSi2: Ab- initio calculations, Ceram. Int., 44(2018), No. 16, p. 19583.

    Article  CAS  Google Scholar 

  48. W.X. Zhang, C. He, T. Li, S.B. Gong, L. Zhao, and J.Y. Tao, First-principles study on the electronic and magnetic properties of armchair graphane/graphene heterostructure nanoribbons, Solid State Commun., 211(2015), p. 23.

    Article  CAS  Google Scholar 

  49. Z. Jiang, Y. Zhang, H.L. Stormer, and P. Kim, Quantum hall states near the charge-neutral dirac point in graphene, Phys. Rev. Lett., 99(2007), art. No. 106802.

  50. W.J. Yu, L. Liao, S.H. Chae, Y. H. Lee, and X. Duan, Toward tunable band gap and tunable Dirac Point in bilayer graphene with molecular doping, Nano Lett., 11(2011), No. 11, p. 4759.

    Article  CAS  Google Scholar 

  51. M. Rafique, Y. Shuai, H.P. Tan, and H Muhammad, Theoretical perspective on structural, electronic and magnetic properties of 3d metal tetraoxide clusters embedded into single and di-vacancy graphene, Appl. Surf. Sci., 408(2017), p. 21.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Extracurricular Open Experiment of Southwest Petroleum University (No. KSZ18513) and the State Key Program of National Natural Science Foundation of China (No. 51474181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Fan, Z., Liu, Jy. et al. Adsorption of Ag on M-doped graphene: First principle calculations. Int J Miner Metall Mater 28, 487–494 (2021). https://doi.org/10.1007/s12613-020-1989-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-1989-0

Keywords

Navigation