Skip to main content
Log in

Graphene-Reinforced Aluminum Matrix Composites: A Review of Synthesis Methods and Properties

  • Metal and Polymer Matrix Composites
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Graphene-reinforced aluminum (Gr-Al) matrix nanocomposites (NCs) have attracted strong interest from both research and industry in high-performance weight-sensitive applications. Due to the vastly different bonding characteristics of the Al matrix (metallic) and graphene (in-plane covalent + inter-plane van der Waals), the graphene phase has a general tendency to agglomerate and phase separate in the metal matrix, which is detrimental for the mechanical and chemical properties of the composite. Thus, synthesis of Gr-Al NCs is extremely challenging. This review summarizes the different methods available to synthesize Gr-Al NCs and the resulting properties achieved in these NCs. Understanding the effect of processing parameters on the realized properties opens up the possibility of tailoring the synthesis methods to achieve the desired properties for a given application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. ASM Handbook Volume 02 - Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (Russell: ASM International, 1990).

    Google Scholar 

  2. D.B. Miracle, Compos. Sci. Technol 65, 2526 (2005).

    Article  Google Scholar 

  3. A. Dorri Moghadam, E. Omrani, P.L. Menezes, and P.K. Rohatgi, Compos. B Eng. 77, 402 (2015).

    Article  Google Scholar 

  4. M. Tabandeh-Khorshid, E. Omrani, P.L. Menezes, and P.K. Rohatgi, Eng. Sci. Technol. Int. J. 19, 463 (2016).

    Article  Google Scholar 

  5. M. Tabandeh-Khorshid, J.B. Ferguson, B.F. Schultz, C.-S. Kim, K. Cho, and P.K. Rohatgi, Mater. Des. 92, 79 (2016).

    Article  Google Scholar 

  6. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Adv. Mater. 22, 3906 (2010).

    Article  Google Scholar 

  7. A. Nieto, A. Bisht, D. Lahiri, C. Zhang, and A. Agarwal, Int. Mater. Rev. 62, 241 (2017).

    Article  Google Scholar 

  8. A.C. Ferrari, F. Bonaccorso, V. Fal’Ko, K.S. Novoselov, S. Roche, P. Bøggild, S. Borini, F.H. Koppens, V. Palermo, and N. Pugno, Nanoscale 7, 4598 (2015).

    Article  Google Scholar 

  9. K. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, Nature 438, 197 (2005).

    Article  Google Scholar 

  10. D. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, Adv. Phys. 59, 261 (2010).

    Article  Google Scholar 

  11. A. Geim, Phys. Scr. 2012, 014003 (2012).

    Article  Google Scholar 

  12. H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, and I.A. Aksay, J. Phys. Chem. B 110, 8535 (2006).

    Article  Google Scholar 

  13. D. Arco, L. Gomez, Y. Zhang, A. Kumar, and C. Zhou, IEEE Trans. Nanotechnol. 8, 135 (2009).

    Article  Google Scholar 

  14. T. Zhou, F. Chen, K. Liu, H. Deng, Q. Zhang, J. Feng, and Q. Fu, Nanotechnology 22, 045704 (2010).

    Article  Google Scholar 

  15. H. Asgharzadeh and M. Sedigh, J. Alloy. Compd. 728, 47 (2017).

    Article  Google Scholar 

  16. S.-J. Yan, C. Yang, Q.-H. Hong, J.-Z. Chen, D.-B. Liu, and S.-L. Dai, J. Mater. Eng. 1, 1 (2011).

    Google Scholar 

  17. K. Novoselov and A.C. Neto, Phys. Scr. 2012, 014006 (2012).

    Article  Google Scholar 

  18. W. Ren and H.-M. Cheng, Nat. Nanotechnol. 9, 726 (2014).

    Article  Google Scholar 

  19. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong, Nano Lett. 9, 30 (2009).

    Article  Google Scholar 

  20. D. Barun, K.E. Prasad, U. Ramamurty, and C.N.R. Rao, Nanotechnology 20, 125705 (2009).

    Article  Google Scholar 

  21. T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, and J.H. Lee, Prog. Polym. Sci. 35, 1350 (2010).

    Article  Google Scholar 

  22. G. Mittal, V. Dhand, K.Y. Rhee, S.-J. Park, and W.R. Lee, J. Ind. Eng. Chem. 21, 11 (2015).

    Article  Google Scholar 

  23. Z. Li, G. Fan, Z. Tan, Q. Guo, D. Xiong, Y. Su, Z. Li, and D. Zhang, Nanotechnology 25, 325601 (2014).

    Article  Google Scholar 

  24. Z. Xu and M.J. Buehler, J. Phys. Condens. Matter 22, 485301 (2010).

    Article  Google Scholar 

  25. F.H. Latief, E.-S.M. Sherif, A.A. Almajid, and H. Junaedi, J. Anal. Appl. Pyrol. 92, 485 (2011).

    Article  Google Scholar 

  26. M. Bastwros, G.-Y. Kim, C. Zhu, K. Zhang, S. Wang, X. Tang, and X. Wang, Compos. B Eng. 60, 111 (2014).

    Article  Google Scholar 

  27. H. Zhang, C. Xu, W. Xiao, K. Ameyama, and C. Ma, Mater. Sci. Eng., A 658, 8 (2016).

    Article  Google Scholar 

  28. S.J. Yan, S.L. Dai, X.Y. Zhang, C. Yang, Q.H. Hong, J.Z. Chen, and Z.M. Lin, Mater. Sci. Eng., A 612, 440 (2014).

    Article  Google Scholar 

  29. W. Yang, G. Chen, J. Qiao, S. Liu, R. Xiao, R. Dong, M. Hussain, and G. Wu, Mater. Sci. Eng., A 700, 351 (2017).

    Article  Google Scholar 

  30. J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, and D. Zhang, Scr. Mater. 66, 594 (2012).

    Article  Google Scholar 

  31. S.F. Bartolucci, J. Paras, M.A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, and N. Koratkar, Mater. Sci. Eng. A 528, 7933 (2011).

    Article  Google Scholar 

  32. F.H. Latief and E.-S.M. Sherif, J. Ind. Eng. Chem. 18, 2129 (2012).

    Article  Google Scholar 

  33. A. Ghazaly, B. Seif, and H.G. Salem, Light Metals 2013 (Hoboken: Wiley, 2013), p. 411.

    Book  Google Scholar 

  34. C.-H. Jeon, Y.-H. Jeong, J.-J. Seo, H.N. Tien, S.-T. Hong, Y.-J. Yum, S.-H. Hur, and K.-J. Lee, Int. J. Precis. Eng. Manuf. 15, 1235 (2014).

    Article  Google Scholar 

  35. R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel, and R. Martínez-Sánchez, J. Alloy. Compd. 615, S578 (2014).

    Article  Google Scholar 

  36. M. Rashad, F. Pan, A. Tang, and M. Asif, Prog. Nat. Sci. Mater. Int. 24, 101 (2014).

    Article  Google Scholar 

  37. J.L. Li, Y.C. Xiong, X.D. Wang, S.J. Yan, C. Yang, W.W. He, J.Z. Chen, S.Q. Wang, X.Y. Zhang, and S.L. Dai, Mater. Sci. Eng. A 626, 400 (2015).

    Article  Google Scholar 

  38. S.E. Shin, H.J. Choi, J.H. Shin, and D.H. Bae, Carbon 82, 143 (2015).

    Article  Google Scholar 

  39. S.E. Shin, Y.J. Ko, and D.H. Bae, Compos. B Eng. 106, 66 (2016).

    Article  Google Scholar 

  40. K.H.G Prashantha and X.M. Anthony, in Graphene Materials - Structure, Properties and Modifications, ed. by G.Z. Kyzas, A. C. Mitropoulos (InTech, Rijeka, 2017), pp. Ch. 07.

  41. G. Liu, N. Zhao, C. Shi, E. Liu, F. He, L. Ma, Q. Li, J. Li, and C. He, Mater. Sci. Eng. A 699, 185 (2017).

    Article  Google Scholar 

  42. J. Wozniak, M. Kostecki, T. Cygan, M. Buczek, and A. Olszyna, Compos. B Eng. 111, 1 (2017).

    Article  Google Scholar 

  43. C. Tomasz, E.A. Korznikova, P. Ozga, L.Lityńska, and R.P. Socha, Innovative Manufacturing Technology IMT 2014, Krakow, Poland (2014).

  44. L. Ci, Z. Ryu, N.Y. Jin-Phillipp, and M. Rühle, Acta Mater. 54, 5367 (2006).

    Article  Google Scholar 

  45. M.A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z.Z. Yu, and N. Koratkar, Small 6, 179 (2010).

    Article  Google Scholar 

  46. M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, and N. Koratkar, ACS Nano 3, 3884 (2009).

    Article  Google Scholar 

  47. L. Jiang, Z. Li, G. Fan, L. Cao, and D. Zhang, Carbon 50, 1993 (2012).

    Article  Google Scholar 

  48. C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science 321, 385 (2008).

    Article  Google Scholar 

  49. S. Wang, M. Tambraparni, J. Qiu, J. Tipton, and D. Dean, Macromolecules 42, 5251 (2009).

    Article  Google Scholar 

  50. A. Elmarakbi, W.L. Azoti, in 10th International Conference on Composite Science and Technology Lisboa, Portugal, September 2–4, 2015 (2015).

  51. G.S. Cole and A.M. Sherman, Mater. Charact. 35, 3 (1995).

    Article  Google Scholar 

  52. A. Ilyin, G. Beall, in Proceedings of the Nanotech, June 13–16, Boston, USA, vol. 1, Ch. 5, p. 574–576 (2011).

Download references

Acknowledgements

Support from the US National Science Foundation Grant IIA-445686 is acknowledged. The views presented in this article are those of authors, not of the funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Behera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Gupta, N., Behera, R.K. et al. Graphene-Reinforced Aluminum Matrix Composites: A Review of Synthesis Methods and Properties. JOM 70, 837–845 (2018). https://doi.org/10.1007/s11837-018-2810-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2810-7

Navigation