Skip to main content

Advertisement

Log in

Durability and microstructure analysis of the road base material prepared from red mud and flue gas desulfurization fly ash

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The present study aimed to investigate the durability and microstructure evolution of road base materials (RBM) prepared from red mud and flue gas desulfurization fly ash. The durability testing showed that the strength of RBM with the blast furnace slag addition of 1wt%, 3wt% and 5wt% reached 3.81, 4.87, and 5.84 MPa after 5 freezing–thawing (F–T) cycles and reached 5.21, 5.75, and 6.98 MPa after 20 weting–drying (W–D) cycles, respectively. The results also indicated that hydration products were continuously formed even during W–D and F–T exposures, resulting in an increase of the strength and durability of RBM. The observed increase of macropores (>1 μm) after F–T and W–D exposures suggested that the mechanism of RBM deterioration is pore enlargement due to cracks that develop inside their matrix. Moreover, the F–T exposure showed a greater negative effect on the durability of RBM compared to the W–D exposure. The leaching tests showed that sodium and heavy metals were solidified below the minimum requirement, which indicates that these wastes are suitable for use as a natural material replacement in road base construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.C. Liu, J.K. Yang, and B. Xiao, Application of Bayer red mud for iron recovery and building material production from alumosilicate residues, J. Hazard. Mater., 161(2009), No. 1, p. 474.

    Article  CAS  Google Scholar 

  2. K. Jayasankar, P.K. Ray, A.K. Chaubey, A. Padhi, B.K. Satapathy, and P.S. Mukherjee, Production of pig iron from red mud waste fines using thermal plasma technology, Int. J. Miner. Metall. Mater, 19(2012), No. 8, p. 679.

    Article  CAS  Google Scholar 

  3. X.F. Zhu, T.A. Zhang, Y.X. Wang, G.Z. Lü, and W.G. Zhang, Recovery of alkali and alumina from Bayer red mud by the calcification-carbonation method, Int. J. Miner. Metall. Mater, 23(2016), No. 3, p. 257.

    Article  CAS  Google Scholar 

  4. N. Zhang, HX. Li, and X.M. Liu, Hydration kinetics of cementitious materials composed of red mud and coal gangue, Int. J. Miner. Metall. Mater, 23(2016), No. 10, p. 1215.

    Article  CAS  Google Scholar 

  5. Y.T. Xu, B. Yang, X.M. Liu, S. Gao, D.S. Li, E. Mukiza, and H.J. Li., Investigation of the medium calcium based non-burnt brick made by red mud and fly ash: Durability and hydration characteristics, Int. J. Miner. Metall. Mater, 26(2019), No. 8, p. 983.

    Article  CAS  Google Scholar 

  6. E. Mukiza, L.L. Zhang, X.M. Liu, and N. Zhang, Utilization of red mud in road base and subgrade materials: A review, Resour. Conserv. Recycl, 141(2019), p. 187.

    Article  Google Scholar 

  7. M. Ahmaruzzaman, A review on the utilization of fly ash, Prog. Energy Combust. Sci., 36(2010), No. 3, p. 327.

    Article  CAS  Google Scholar 

  8. BR. Parhi, S.K. Sahoo, S.C. Mishra, B. Bhoi, R.K. Paramguru, and B.K. Satapathy, Upgradation of bauxite by molecular hydrogen and hydrogen plasma, Int. J. Miner. Metall. Mater, 23(2016), No. 10, p. 1141.

    Article  CAS  Google Scholar 

  9. X.P. Wang, T.C. Sun, J. Kou, Z.C. Li, and Y. Tian, Feasibility of co-reduction roasting of a saprolitic laterite ore and waste red mud, Int. J. Miner. Metall. Mater, 25(2018), No. 6, p. 591.

    Article  CAS  Google Scholar 

  10. P.E. Tsakiridis, S. Agatzini-Leonardou, and P. Oustadakis, Red mud addition in the raw meal for the production of Portland cement clinker, J. Hazard. Mater, 116(2004), No. 1-2, p. 103.

    Article  CAS  Google Scholar 

  11. Y.B. Zong, W.H. Chen, Y. Fan, TL. Yang, Z.B. Liu, and D.Q. Cang, Complementation in the composition of steel slag and red mud for preparation of novel ceramics, Int. J. Miner. Metall. Mater, 25(2018), No. 9, p. 1010.

    Article  CAS  Google Scholar 

  12. W.G. Shen, M.K. Zhou, W. Ma, J.Q. Hu, and Z. Cai, Investigation on the application of steel slag-fly ash-phosphogypsum solidified material as road base material, J Hazard. Mater, 164(2009), No. 1, p. 99.

    Article  CAS  Google Scholar 

  13. P. Newman, K. Hargroves, C. Desha, L. Whistler, A. Farr, K.J. Wilson, and L. Surawski, Reducing the Environmental Impact of Road Construction, Sustainable Built Environment National Research Centre, Brisbane, 2012.

    Google Scholar 

  14. Y.H. Zhang, W. Chen, G.C. Lv, F.Z. Lv, PK. Chu, W.M. Guo, B.L. Cui, R. Zhang, and H. Wang, Adsorption of polyvinyl alcohol from wastewater by sintered porous red mud, Water Sci. Technol, 65(2012), No. 11, p. 2055.

    Article  CAS  Google Scholar 

  15. H. Sutar, S.C. Mshra, S.K. Sahoo, A. P. Chakraverthy, and H.S. Maharana, Progress of red mud utilization: An Overview, Am. Chem. Sci. J., 4(2014), No. 3, p. 255.

    Article  Google Scholar 

  16. N. G. Reddy and K. S. Chandra, Characterization and comprehensive utilization of red mud—An overview, Int. J. Sci. Res. Dev., 2(2014), No. 1, p. 670.

    CAS  Google Scholar 

  17. I. Skrzypczak, W. Radwański, and T. Pytlowany, Durability vs technical—The usage properties of road pavements, E3S Web Conf, 45(2018), art. No. 0082.

  18. N. Khoury and M.M. Zaman, Durability of stabilized base courses subjected to wet-dry cycles, Int. J. Pavement Eng., 8(2007), No. 4, p. 265.

    Article  CAS  Google Scholar 

  19. A.E.A. El-Maaty Behiry Behiry, Utilization of a new byproduct material for soft subgrade soil stabilization, Open Access Lib. J., 1(2014), No. 3, p. 1.

    Google Scholar 

  20. J.M. Zhang and C. Li, Experimental study on lime and fly ash-stabilized sintered red mud in road base, J. Test. Eval, 46(2018), No. 4, p. 1539.

    Google Scholar 

  21. X.M. Liu, B.W. Tang, H.F. Yin, and E. Mukiza, Durability and environmental performance of Bayer red mud-coal gangue based road base material, Chin. J. Eng., 40(2018), No. 4, p. 438.

    Google Scholar 

  22. X.Q. Song, M. Jiang, and P.W. Xiong, Analysis of the thermophysical properties and influencing factors of various rock types from the guizhou province, E3S Web Conf, 53(2018), art. No. 03059

  23. C.H.V. Hanumanth Rao, N.P. Ganapati, P.V.V. Satyanayarana, and S. Adiseshu, Application of GGBS stabilized red mud in road construction, IOSR J. Eng., 2(2012), No. 8, p. 14.

    Article  Google Scholar 

  24. J.M. Khatib, P.S. Mangat, and L. Wright, Early age porosity and pore size distribution of cement paste with flue gas desulphurisation (Fgd) waste, J. Civ. Eng. Manage., 19(2013), No. 5, p. 622.

    Article  Google Scholar 

  25. H. Dong, P. Gao, and G. Ye, Characterization and comparison of capillary pore structures of digital cement pastes, Mater. Struct, 50(2017), No. 2, p. 154.

    Article  Google Scholar 

  26. A. Fernández-Jiménez, F. Puertas, I. Sobrados, and J. Sanz, Structure of calcium silicate hydrates formed in alkaline-activated slag: Influence of the type of alkaline activator, J. Am. Ceram. Soc, 86(2003), No. 8, p. 1389.

    Article  Google Scholar 

  27. A. Uchaipichat, Influence of repeated wetting-drying process on unconfined compressive strength of cement modified crushed rock base, Electron. J. Geotech. Eng., 20(2015), No. 13, p. 5151.

    Google Scholar 

  28. P.M. Wang and X.P. Liu, Effect of temperature on the hydration process and strength development in blends of Portland cement and activated coal gangue or fly ash, J. Zhejiang Univ. Sci. A, 12(2011), No. 2, p. 162.

    Article  CAS  Google Scholar 

  29. S. Hossain, LW. Kong, and Y. Song, Effect of drying-wetting cycles on saturated shear strength of undisturbed residual soils, Am. J. Civ. Eng., 4(2016), No. 4, p. 143.

    Article  Google Scholar 

  30. T.C. Ling, K.H. Mo, L. Qu, J.J. Yang, and L. Guo, Mechanical strength and durability performance of autoclaved lime-saline soil brick, Constr. Build. Mater, 146(2017), p. 403.

    Article  Google Scholar 

  31. M.I. Mousa, M.G. Mahdy, A.H. Abdelreheem, and A.Z. Yehia, Self-curing concrete types; water retention and durability, Alexandria Eng. J., 54(2015), No. 3, p. 565.

    Article  Google Scholar 

  32. A. Jiménez and M. Prieto, Thermal stability of ettringite exposed to atmosphere: implications for the uptake of harmful Ions by cement, Environ. Sci. Technol, 49(2015), No. 13, p. 7957.

    Article  Google Scholar 

  33. K.P. Teixeira, I.P. Rocha, L. de SáCarneiro, J. Flores, EA. Dauer, and A. Ghahremaninezhad, The effect of curing temperature on the properties of cement pastes modified with TiO2 nanoparticles Materals, 9(2016), No. 11, p. 952.

    Article  Google Scholar 

  34. X.M. Liu, X.B. Zhao, H.F. Yin, J.L. Chen, and N. Zhang, Intermediate-calcium based cementitious materials pepared by MSWI fly ash and other solid wastes: Hydration characteristics and heavy metals solidification behavior, J. Hazard. Mater, 349(2018), p. 262.

    Article  CAS  Google Scholar 

  35. N. Zhang, HX. Li, Y.Z. Zhao, and X.M. Liu, Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag, J. Hazard. Mater, 306(2016), p. 67.

    Article  Google Scholar 

  36. E. Mukiza, L.L. Zhang, X.M. Liu, and N. Zhang, Preparation and characterization of a red mud-based road base material: Strength formation mechanism and leaching characteristics, Constr. Build. Mater, 220(2019), p. 297.

    Article  CAS  Google Scholar 

  37. X. Pardal, F. Brunet, T. Charpentier, I. Pochard, and A. Nonat, 27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate, Inorg. Chem., 51(2012), No. 3, p. 1827.

    Article  CAS  Google Scholar 

  38. Z.H. Wang, S.H. Ma, S.L. Zheng, and X.H. Wang, Incorporation of Al and Na in hydrothermally synthesized tobermorite, J. Am. Ceram. Soc, 100(2017), No. 2, p. 792.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51574024 and U1760112) and Fundamental Research Funds for the Central Universities of China (FRF-AT-19-007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling-ling Zhang or Xiao-ming Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukiza, E., Zhang, Ll. & Liu, Xm. Durability and microstructure analysis of the road base material prepared from red mud and flue gas desulfurization fly ash. Int J Miner Metall Mater 27, 555–568 (2020). https://doi.org/10.1007/s12613-019-1915-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1915-5

Keywords

Navigation