Skip to main content
Log in

Characterization of Cu–Ti powder metallurgical materials

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Powder metallurgical Cu–Ti alloys with different titanium additions produced by hot pressing were characterized by optical microscopy, scanning electron microscopy, X-ray diffraction analysis, and hardness, wear and bending tests. The addition of titanium to copper caused the formation of different intermetallic layers around titanium particles. The titanium content of the intermetallics decreased from the center of the particle to the copper matrix. The hardness, wear resistance, and bending strength of the materials increased with increasing Ti content, whereas strain in the bending test decreased. Worn surface analyses showed that different wear mechanisms were active during the wear test of specimens with different chemical compositions. Changes in the properties of the materials with titanium addition were explained by the high hardness of different Cu–Ti intermetallic phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ranjbar Motlagh, M.H. Maghsoudi, and S. Serajzadeh, Softening behaviour of alumina reinforced copper processed by equal channel angular pressing, Mater. Sci. Technol., 30(2014), No. 2, p. 220.

    Article  Google Scholar 

  2. K. Song, X. Guo, S. Liang, P. Zhao, and Y. Zhang, Relationship between interfacial stress and thermal expansion coefficient of copper-matrix composites with different reinforced phases, Mater. Sci. Technol., 30(2014), No. 2, p. 171.

    Article  Google Scholar 

  3. S.Z. Han, M. Goto, J.H. Ahn, S.H. Lim, S. Kim, and J. Lee, Grain growth in ultrafine grain sized copper during cyclic deformation, J. Alloys Compd., 615(2014), Suppl. 1, p. S587.

    Article  Google Scholar 

  4. S.B. Chandrasekhar, N.P. Wasekar, M. Ramakrishna, P.S. Babu, T.N. Rao, and B.P. Kashyap, Dynamic strain ageing in fine grained Cu–1wt%Al2O3 composite processed by two step ball milling and spark plasma sintering, J. Alloys Compd., 656(2016), p. 423.

    Article  Google Scholar 

  5. J.H. Nie, C.C. Jia, X. Jia, Y.F. Zhang, and X.B. Liang, Fabrication and thermal conductivity of copper matrix composites reinforced by tungsten-coated carbon nanotubes, Int. J. Miner. Metall. Mater., 19(2012), No. 5, p. 446.

    Article  Google Scholar 

  6. S. Semboshi, S. Orimo, H. Suda, W. Gao, and A. Sugawara, Aging of copper−titanium dilute alloys in hydrogen atmosphere: influence of prior-deformation on strength and electrical conductivity, Mater. Trans., 52(2011), No. 12, p. 2137.

    Article  Google Scholar 

  7. Y. Tang, G. Zhu, Y. Kang, L. Yue, and X. Jiao, Effect of microstructure on the fatigue crack growth behavior of Cu–Be–Co–Ni alloy, J. Alloys Compd., 663(2016), p. 784.

    Article  Google Scholar 

  8. P. Behjati, H.V. Dastjerdi, and R. Mahdavi, Influence of ageing process on sound velocity in C17200 copper−beryllium alloy, J. Alloys Compd., 505(2010), No. 2, p. 739.

    Article  Google Scholar 

  9. L. Yagmur, Effect of microstructure on internal friction and Young’s modulus of aged Cu–Be alloy, Mater. Sci. Eng. A, 523(2009), No. 1-2, p. 65.

    Article  Google Scholar 

  10. A. Kamegawa, T. Kuriiwa, and M. Okada, Effects of dehydrogenation heat-treatment on electrical−mechanical properties for hydrogenated Cu–3mass%Ti alloys, J. Alloys Compd., 566(2013), p. 1.

    Article  Google Scholar 

  11. S. Li, Z. Li, X. Zhu, S.H. Li, L.N. Shen, and Q.Y. Dong, Microstructure and property of Cu–2.7Ti–0.15Mg–0.1Ce–0.1Zr alloy treated with a combined aging process, Mater. Sci. Eng. A., 640(2016), p. 345.

    Google Scholar 

  12. S. Nagarjuna, Thermal conductivity of Cu–4.5Ti alloy, Bull. Mater. Sci., 27(2004), No. 1, p. 69.

    Article  Google Scholar 

  13. F. Hernadez-Santiago, N. Cayetano-Castro, V.M. Lopez-Hirata, H.J. Dorantes-Rosales, and J.J. Cruz-Rivera, Precipitation kinetics in a Cu–4mass% Ti alloy, Mater. Trans., 45(2004), No. 7, p. 2312.

    Article  Google Scholar 

  14. D.E. Laughlin and J.W. Cahn, Spinodal decomposition in age hardening copper–titanium alloys, Acta Metall., 23(1975), No. 3, p. 329.

    Article  Google Scholar 

  15. A. Datta and W.A. Soffa, The structure and properties of age hardened Cu–Ti alloys, Acta Metall., 24(1976), No. 11, p. 987.

    Article  Google Scholar 

  16. S. Semboshi, S. Sato, M. Ishikuro, K. Wagatsuma, A. Iwase, and T. Takasugi, Investigation of precipitation behavior in age-hardenable Cu–Ti alloys by an extraction-based approach, Metall. Mater. Trans. A, 45(2014), No. 8, p. 3401.

    Article  Google Scholar 

  17. A. Chanda and M. De, X-ray characterization of the microstructure of α-CuTi alloys by Rietveld’s method, J Alloys Compd., 313(2000), No. 1-2, p. 104.

    Article  Google Scholar 

  18. S. Nagarjuna, M. Srinivas, K. Balasubramanian, and D.S. Sarma, Effect of alloying content on high cycle fatigue behaviour of Cu–Ti alloys, Int. J. Fatigue, 19(1997), No. 1, p. 51.

    Article  Google Scholar 

  19. R. Nishio, T.J. Konno, and S. Semboshi, Transmission electron microscopy observations on Cu–Ti alloy systems, Mater. Sci. Forum, 502(2005), p. 163.

    Article  Google Scholar 

  20. S. Semboshi, S. Yamauchi, and H. Numakura, Formation of titanium hydride in dilute Cu–Ti alloy by aging in hydrogen atmosphere and its effects on electrical and mechanical properties, Mater Trans., 54(2013), No. 4, p. 520.

    Article  Google Scholar 

  21. S. Nagarjuna and D.S. Sarma, Effect of cobalt additions on the age hardening of Cu–4.5Ti alloy, J. Mater. Sci., 37(2002), No. 10, p. 1929.

    Article  Google Scholar 

  22. W.A. Soffa and D.E. Laughlin, High-strength age hardening copper–titanium alloys: redivivus, Prog. Mater. Sci., 49(2004), No. 3-4, p. 347.

    Article  Google Scholar 

  23. S. Nagarjuna and M. Srinivas, High temperature tensile behaviour of a Cu–1.5wt% Ti alloy, Mater. Sci. Eng. A, 335(2002), No. 1-2, p. 89.

    Article  Google Scholar 

  24. S. Nagarjuna, K. Balasubramanian, and D.S. Sarma, Effect of Ti additions on the electrical resistivity of copper, Mater. Sci. Eng. A, 225(1997), No. 1-2, p. 118.

    Article  Google Scholar 

  25. M. Sobhani, A. Mirhabibi, H. Arabi, and R.M.D. Brydson, Effects of in situ formation of TiB2 particles on age hardening behavior of Cu–1wt% Ti–1wt% TiB2, Mater. Sci. Eng. A, 577(2013), p. 16.

    Article  Google Scholar 

  26. S. Nagarjuna, K. Balasubramanian, and D. S Sarma, Effect of prior cold work on mechanical properties, electrical conductivity and microstructure of aged Cu–Ti alloys, J. Mater. Sci., 34(1999), No. 12, p. 2929.

    Article  Google Scholar 

  27. S.S. Naboychenko, I.B. Murashova, and O.D. Neikov, Production of copper and copper alloy powders, [in] O.D. Neikov, S.S. Naboychenko, I.V. Murashova, V.G. Gopienko, I.V. Frishberg, and D.V. Lotsko, Handbook of Non-ferrous Metal Powders: Technologies and Applications, Elsevier Science, Oxford, 2009, p. 331.

    Chapter  Google Scholar 

  28. H.L. Hao, W. Mo, Y.H. Lv, S.L. Ye, R.N. Gu, and P. Wu, The effect of trace amount of Ti and W on the powder metallurgy process of Cu, J. Alloys Compd., 660(2016), p. 204.

    Article  Google Scholar 

  29. K. Dash, B.C. Ray, and D. Chaira, Synthesis and characterization of copper–alumina metal matrix composite by conventional and spark plasma sintering, J. Alloys Compd., 516(2012), p. 78.

    Article  Google Scholar 

  30. E. Akbarzadeh and S.E. Shakib, Comparison of effective parameters for copper powder production via electrorefining and electrowinning cells and improvement using DOE methods, Int. J. Miner. Metall. Mater., 18(2011), No. 6, p. 731.

    Article  Google Scholar 

  31. M. Shabani, M.H. Paydar, and M.M. Moshkar, Fabrication and densification enhancement of SiC-particulate-reinforced copper matrix composites prepared via the sinter−forging process, Int. J. Miner. Metall. Mater., 21(2014), No. 9, p. 934.

    Article  Google Scholar 

  32. F. Wang, Y. Li, K. Wakoh, Y. Koizumi, and A. Chiba, Cu–Ti–C alloy with high strength and high electrical conductivity prepared by two-step ball-milling processes, Mater. Des., 61(2014), p. 70.

    Article  Google Scholar 

  33. J. Ružić, J. Stašić, V. Rajković, and D. Božić, Strengthening effect in precipitation and dispersion hardened powder metallurgy copper alloys, Mater. Des., 49(2013), p. 746.

    Article  Google Scholar 

  34. Z. Ni, H. Zhao, P. Mi, and F. Ye, Effect of sintering time on the bending strength and CTE of SiC/Al–35Si composite, Vacuum, 124(2016), p. 28.

    Article  Google Scholar 

  35. F. Akhlaghi and A. Zare-Bidaki, Influence of graphite content on the dry sliding and oil impregnated sliding wear behavior of Al 2024-graphite composites produced by in situ powder metallurgy method, Wear, 266(2009), No. 1-2, p. 37.

    Article  Google Scholar 

  36. R. Yamanoglu, E. Karakulak, M. Zeren, and F.G. Koç, Effect of nickel on microstructure and wear behaviour of pure aluminium against steel and alumina counterfaces, Int. J. Cast Met. Res., 26(2013), No. 5, p. 289.

    Article  Google Scholar 

  37. K. Sang, Y. Weng, Z. Huang, X. Hui, and H. Li, Preparation and interpenetrating alumina–copper composites, Ceram. Int., 42(2016), No. 5, p. 6129.

    Article  Google Scholar 

  38. G.H.A. Bagheri, The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles, J. Alloys Compd., 676(2016), p. 120.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdem Karakulak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakulak, E. Characterization of Cu–Ti powder metallurgical materials. Int J Miner Metall Mater 24, 83–90 (2017). https://doi.org/10.1007/s12613-017-1381-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-017-1381-x

Keywords

Navigation