Skip to main content

Advertisement

Log in

Enhanced mechanical properties and formability of 316L stainless steel materials 3D-printed using selective laser melting

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

This study is conducted to develop an innovative and attractive selective laser melting (SLM) method to produce 316L stainless steel materials with excellent mechanical performance and complex part shape. In this work, the subregional manufacturing strategy, which separates the special parts from the components using an optimized process, was proposed. The results showed that produced 316L materials exhibited superior strength of ~755 MPa and good ductility. In the as-built parts, austenite with preferred orientation of the (220) plane, δ-ferrite, and a small amount of CrO phases were present. In addition, the crystal size was fine, which contributed to the enhancement of the parts’ mechanical properties. The structural anisotropy mechanism of the materials was also investigated for a group of half-sized samples with variable inclination directions. This technique was used to fabricate a set of impellers with helical bevels and high-precision planetary gears, demonstrating its strong potential for use in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S Tanhaei, K Gheisari, and S.R.A. Zaree, Effect of cold rolling on the microstructural, magnetic, mechanical, and corrosion properties of AISI 316L austenitic stainless steel, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 630.

    Article  CAS  Google Scholar 

  2. F.K. Yan, G.Z. Liu, N.R. Tao, and K. Lu, Strength and ductility of 316L austenitic stainless steel strengthened by na-no-scale twin bundles, Acta Mater., 60(2012), No. 3, p. 1059.

    Article  CAS  Google Scholar 

  3. B Vayre, F Vignat, and F. Villeneuve, Metallic additive manufacturing: state-of-the-art review and prospects, Mech. Ind., 13(2012), No. 2, p. 89.

    Article  CAS  Google Scholar 

  4. H.P. Duan, X Liu, X.Z. Ran, J Li, and D. Liu, Mechanical properties and microstructure of 3D-printed high Co-Ni secondary hardening steel fabricated by laser melting deposition, Int. J. Miner. Metall. Mater., 24(2017), No. 9, p. 1027.

    Article  CAS  Google Scholar 

  5. R.D. Li, J.H. Liu, Y.S. Shi, M.Z. Du, and Z. Xie, 316L stainless steel with gradient porosity fabricated by selective laser melting, J. Mater. Eng. Perform., 19(2010), No. 5, p. 666.

    Article  CAS  Google Scholar 

  6. A.I. Noskov, A.Kh. Gilmutdinov, and R.M. Yanbaev, Effect of coaxial laser cladding parameters on bead formation, Int. J. Miner. Metall. Mater., 24(2017), No. 5, p. 550.

    Article  CAS  Google Scholar 

  7. I Yadroitsev, T Ludovic, P Bertrand, and I. Smurov, Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder, Appl. Surf. Sci., 254(2007), No. 4, p. 980.

    Article  CAS  Google Scholar 

  8. T Vilaro, C Colin, and J.D. Bartout, As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting, Metall. Mater. Trans. A, 42(2011), No. 10, p. 3190.

    Article  CAS  Google Scholar 

  9. J Suryawanshi, K.G. Prashanth, and U. Ramamurty, Mechanical behavior of selective laser melted 316L stainless steel, Mater. Sci. Eng. A, 696(2017), p. 113.

    Article  CAS  Google Scholar 

  10. L Thijs, F Verhaeghe, T Craeghs, J Van Humbeeck, and J.P. Kruth, A study of the microstructural evolution during selective laser melting of Ti-6Al-4V, Acta Mater., 58(2010), No. 9, p. 3303.

    Article  CAS  Google Scholar 

  11. R.D. Li, Y.S. Shi, Z.G. Wang, L Wang, J.H. Liu, and W. Jiang, Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting, Appl. Surf. Sci., 256(2010), No. 13, p. 4350.

    Article  CAS  Google Scholar 

  12. S Leuders, S Meiners, L Wu, A Taube, T Tröster, and T. Niendorf, Structural components manufactured by selective laser melting and investment casting—impact of the process route on the damage mechanism under cyclic loading, J. Mater. Process. Technol., 248(2017), p. 130.

    Article  Google Scholar 

  13. T Kurzynowski, K Gruber, W Stopyra, B Kuźnicka, and E. Chlebus, Correlation between process parameters, micro-structure and properties of 316 L stainless steel processed by selective laser melting, Mater. Sci. Eng. A, 718(2018), p. 64.

    Article  CAS  Google Scholar 

  14. D Wang, S.Z Mai, D.M. Xiao, and Y.Q. Yang, Surface quality of the curved over-hanging structure manufactured from 316-L stainless steel by SLM, Int. J. Adv. Manuf. Technol., 86(2016), No. 1–4, p. 781.

    Article  Google Scholar 

  15. J.P. Choi, G.H. Shin, M Brochu, Y.J. Kim, S.S. Yang, K.T. Kim, D.Y. Yang, C.W. Lee, and J.H. Yu, Densification behavior of 316L stainless steel parts fabricated by selective laser melting by variation in laser energy density, Mater. Trans., 57(2016), No. 11, p. 1952.

    Article  CAS  Google Scholar 

  16. G Miranda, S Faria, F Bartolomeu, E Pinto, S Madeira, A Mateus, P Carreira, N Alves, F.S. Silva, and O. Carvalho, Predictive models for physical and mechanical properties of 316L stainless steel produced by selective laser melting, Mater. Sci. Eng. A, 657(2016), p. 43.

    Article  CAS  Google Scholar 

  17. S.L. Sing, F.E. Wiria, and W.Y. Yeong, Selective laser melting of lattice structures: A statistical approach to manufactu-rability and mechanical behavior, Robot. Comput.-Integr. Manuf., 49(2018), p. 170.

    Article  Google Scholar 

  18. D.K. Do and P.F. Li, The effect of laser energy input on the microstructure, physical and mechanical properties of Ti-6A1-4V alloys by selective laser melting, Virtual Phys. Prototyp., 11(2016), No. 1, p. 41.

    Article  Google Scholar 

  19. A Ahmadi, R Mirzaeifar, N.S. Moghaddam, A.S. Turabi, H.E. Karaca, and M. Elahinia, Effect of manufacturing parameters on mechanical properties of 316L stainless steel parts fabricated by selective laser melting: a computational framework, Mater. Des., 112(2016), p. 328.

    Article  CAS  Google Scholar 

  20. R Rashid, S.H. Masood, D Ruan, S Palanisamy, R.A.R. Rashi, and M. Brandt, Effect of scan strategy on density and metallurgical properties of 17-4PH parts printed by Selective Laser Melting (SLM), J. Mater. Process. Technol., 249(2017), p. 502.

    Article  CAS  Google Scholar 

  21. D Wang, S.B. Wu, and Y.C. Bai, Characteristics of typical geometrical features shaped by selective laser melting, J. Laser Appl., 29(2017), No. 2, art No. 022007.

    Article  Google Scholar 

  22. P Hanzl, M Zetek, T Bakša, and T. Kroupa. The influence of processing parameters on the mechanical properties of SLM parts, Procedia Eng., 100(2015), p. 1405.

    Article  Google Scholar 

  23. I Tolosa, F Garciandía, F Zubiri, F Zapirain, and A. Es-naola, Study of mechanical properties of AISI 316 stainless steel processed by “selective laser melting”, following different manufacturing strategies, Int. J. Adv. Manuf. Technol., 51(2010), No. 5–8, p. 639.

    Article  Google Scholar 

  24. H.Y. Chen, D.D. Gu, J.P. Xiong, and M.J. Xia, Improving additive manufacturing processability of hard-to-process overhanging structure by selective laser melting, J. Mater. Process. Techol., 250(2017), p. 99.

    Article  Google Scholar 

  25. B Vandenbroucke and J.P. Kruth, Selective laser melting of biocompatible metals for rapid manufacturing of medical parts, Rapid Prototyp. J., 13(2007), No. 4, p. 196.

    Article  Google Scholar 

  26. J.P. Kruth, G Levy, F Klocke, and T.H.C. Childs, Consolidation phenomena in laser and powder-bed based layered manufacturing, Cirp Ann., 56(2007), No. 2, p. 730.

    Article  Google Scholar 

  27. D.D. Gu, Y.C. Hagedorn, W Meiners, G.B. Meng, R.J.S. Batista, K Wissenbach, and R. Poprawe, Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium, Acta Mater., 60(2012), No. 9, p. 3849.

    Article  CAS  Google Scholar 

  28. R.D. Li, Y.S. Shi, L Wang, J.H. Liu, and Z.G. Wang, The key metallurgical features of selective laser melting of stainless steel powder for building metallic part, Powder Metall. Met. Ceram., 50(2011), No. 3–4, p. 141.

    Article  CAS  Google Scholar 

  29. Y.M. Wang, T Voisin, J.T. McKeown, J.C. Ye, N.P. Calta, Z Li, Z Zeng, Y Zhang, W Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, and T. Zhu, Additively manufactured hierarchical stainless steels with high strength and ductility, Nat. Mater., 17(2018), p. 63.

    Article  CAS  Google Scholar 

  30. C.L. Qiu, C Panwisawas, M Ward, H.C. Basoalto, J.W. Brooks, and M.M. Attallah, On the role of melt flow into the surface structure and porosity development during selective laser melting, Acta Mater., 96(2015), p. 72.

    Article  CAS  Google Scholar 

  31. R Casati, J Lemke, and M. Vedani, Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting, J. Mater. Sci. Technol., 32(2016), No. 8, p. 738.

    Article  Google Scholar 

  32. M.S.F. de Lima and S. Sankaré, Microstructure and mechanical behavior of laser additive manufactured AISI 316 stainless steel stringer, Mater. Des., 55(2014), p. 526.

    Article  Google Scholar 

  33. C Rotty, M.L. Doche, A Mandroyan, J.Y. Hihn, G Monta-von, and V. Moutarlier, Comparison of electro polishing behaviours of TSC, ALM and cast 316L stainless steel in H3PO4 /H2SO4, Surf. Interface, 6(2017), p. 170.

    Article  CAS  Google Scholar 

  34. D Herzog, V Seyda, E Wycisk, and C. Emmelmann, Additive manufacturing of metals, Acta Mater., 117(2016), p. 371.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is partly supported by the Key R&D Programs of Sichuan Province of China (No. 2018GZ0145), the Science and Technology Planning Projects of Zigong of Sichuan Province (No. 2018CDZG-1), and the Major Scientific and Technological Key Bidding Projects in Panzhihua Experimental Zone (No. 1640STC30166/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-qin Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Xq., Liu, Y., Ye, Jw. et al. Enhanced mechanical properties and formability of 316L stainless steel materials 3D-printed using selective laser melting. Int J Miner Metall Mater 26, 1396–1404 (2019). https://doi.org/10.1007/s12613-019-1837-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1837-2

Keywords

Navigation