Skip to main content
Log in

Nanoscale electropolishing of high-purity nickel with an ionic liquid

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

High purity (>99.9% composition) nickel metal specimens were used in electropolishing treatments with an acid-free ionic liquid electrolyte prepared from quaternary ammonium salts as a green polishing solution. Voltammetry and chronoamperometry tests were conducted to determine the optimum conditions for electrochemical polishing. Atomic force microscopy (AFM) revealed nanoscale effectiveness of each polishing treatment. Atomic force microscopy provided an overall observation of the material interface between the treated and unpolished regions. Surface morphology comparisons summarized electrochemical polishing efficiency by providing root-mean-square roughness averages before and after electrochemical polishing to reveal a mirror finish six times smoother than the same nickel metal surface prior to electropolishing. This transition manifested in a marked change in root-mean-squared roughness from 112.58 nm to 18.64 nm and producing a smooth mirror finish. Finally, the mechanism of the ionic liquid during electropolishing revealed decomposition of choline in the form of a transient choline radical by acceptance of an electron from the nickel-working electrode to decompose to trimethylamine and ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.V. Plechkova and K.R. Seddon, Applications of ionic liquids in the chemical industry, Chem. Soc. Rev., 37(2008), No. 1, p. 123.

    Article  Google Scholar 

  2. G. Palumbo and K.T. Aust, Structure-dependence of intergranular corrosion in high purity nickel, Acta Metall. Mater., 38(1990), No. 11, p. 2343.

    Article  Google Scholar 

  3. W. Han and F.Z. Fang, Fundamental aspects and recent developments in electropolishing, Int. J. Mach. Tools Manuf., 139(2019), p. 1.

    Article  Google Scholar 

  4. M. Chen, W.L. Ao, C.S. Dai, T. Tao, and J. Yang, Synthesis and electrochemical properties of LiNi0.8Al0.2-xTixO2 cathode materials by an ultrasonic-assisted co-precipitation method, Int. J. Miner. Metall. Mater., 16(2009), No. 4, p. 452.

    Article  Google Scholar 

  5. C. Ding, K.W. Gao, and C.F. Chen, Effect of Ca2+ on CO2 corrosion properties of X65 pipeline steel, Int. J. Miner. Metall. Mater., 16(2009), No. 6, p. 661.

    Google Scholar 

  6. A.I. Wixtrom, J.E. Buhler, C.E. Reece, and T.M. Abdel-Fattah, Electrochemical polishing applications and EIS of a vitamin B4-based ionic liquid, J. Electrochem. Soc., 160(2013), No. 3, p. E22.

    Article  Google Scholar 

  7. T.M. Abdel-Fattah, J.D. Loftis, and A. Mahapatro, Nanoscale electrochemical polishing and preconditioning of biometallic nickel-titanium alloys, Nanosci. Nanotechnol., 5(2015), No. 2, p. 36.

    Google Scholar 

  8. J.C. Rajaguru, M. Duke, and C. Au, Investigation of electroless nickel plating on rapid prototyping material of acrylic resin, Rapid Prototyping J., 22(2016), No. 1, p. 162.

    Article  Google Scholar 

  9. R. Ohara, C.H. Lan, and C.S. Hwang, Electrochemical and structural characterization of electroless nickel coating on Mg2Ni hydrogen storage alloy, J. Alloys Compd., 580(2013), p. S368.

    Article  Google Scholar 

  10. T. Kume, S. Egawa, G. Yamaguchi, and H. Mimura, Influence of residual stress of electrodeposited layer on shape replication accuracy in Ni electroforming, Procedia CIRP, 42(2016), p. 783.

    Article  Google Scholar 

  11. M.H. Liu, Y. Meng, Y. Zhao, F.H. Li, Y.L. Gong, and L. Feng, Electropolishing parameters optimization for enhanced performance of nickel coating electroplated on mild steel, Surf. Coat. Technol., 286(2016), p. 285.

    Article  Google Scholar 

  12. A.I. Wixtrom, J.E. Buhler, C.E. Reece, and T.M. Abdel-Fattah, Reclamation of niobium compounds from ionic liquid electrochemical polishing of superconducting radio frequency cavities, J. Environ. Chem. Eng., 1(2013), No. 1–2, p. 18.

    Article  Google Scholar 

  13. T.M. Abdel-Fattah and J.D. Loftis, Surface characterization of high purity metals of silver and nickel electropolished with an ionic liquid, ECS Trans, 25(2010), No. 39, p. 57.

    Google Scholar 

  14. T.M. Abdel-Fattah, J.D. Loftis, and A. Mahapatro, Nanosized controlled surface pretreatment of biometallic alloy 316L stainless steel, J. Biomed. Nanotechnol., 7(2010), No. 6, p. 794.

    Article  Google Scholar 

  15. T.M. Abdel-Fattah, J.D. Loftis, and A. Mahapatro, Nanoscale surface pretreatment of biomedical Co-Cr alloy, J. Surf. Interfaces Mater., 3(2015), No. 1, p. 67.

    Article  Google Scholar 

  16. G.J. Janz, Molten Salts Handbook, Elsevier, 2013, p. 558.

    Google Scholar 

  17. T.M. Abdel-Fattah and J.D. Loftis, Comparison of the electrochemical polishing of copper and aluminum in acid and acid-free media, ECS Trans., 25(2009), No. 7, p. 327.

    Article  Google Scholar 

  18. T.M. Abdel-Fattah, J.D. Loftis, and A. Mahapatro, Ionic liquid electropolishing of metal alloys for biomedical applications, ECS Trans., 25(2010), No. 19, p. 57.

    Google Scholar 

  19. T. Dushatinski, C. Huff, and T.M. Abdel-Fattah, Characterization of electrochemically deposited films from aqueous and ionic liquid cobalt precursors toward hydrogen evolution reactions, Appl. Surf. Sci., 385(2016), p. 282.

    Article  Google Scholar 

  20. A.P. Abbott and K.J. McKenzie, Application of ionic liquids to the electrodeposition of metals, Phys. Chem. Chem. Phys., 37(2006), No. 8, p. 4265.

    Article  Google Scholar 

  21. A.P. Abbott, G. Frisch, J. Hartley, W.O. Karim, and K.S. Ryder, Anodic dissolution of metals in ionic liquids, Prog. Nat. Sci., 25(2015), No. 6, p. 595.

    Article  Google Scholar 

  22. A.P. Abbott, A. Ballantyne, R.C. Harris, J.A. Juma, K.S. Ryder, and G. Forrest, A comparative study of nickel electrodeposition using deep eutectic solvents and aqueous solutions, Electrochim. Acta, 176(2015), p. 718.

    Article  Google Scholar 

  23. E.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa, and H.H. Soliman, Roughness parameters, J. Mater. Process. Technol., 123(2002), No. 1, p. 133.

    Article  Google Scholar 

  24. R.R.L. DeOliveira, D.A.C. Albuquerque, T.G.S. Cruz, F.M. Yamaji, and F.L. Leite, Measurement of the nanoscale roughness by atomic force microscopy: basic principles and applications, [in] Victor Bellitto eds., Atomic Force Microscopy, Imaging, Measuring and Manipulating Surfaces at the Atomic Scale, InTech, Croatia, 2012, p. 147.

    Google Scholar 

  25. J.D. Loftis and T.M. Abdel-Fattah, Nanoscale electropolishing of high purity silver with a deep eutectic solvent, Colloid Surf. A, 551(2016), p. 113.

    Article  Google Scholar 

  26. A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Application, John Wiley and Sons Publishing, New York, 1980, p. 864.

    Google Scholar 

  27. M. Lambrechts and W.M.C. Sansen, Biosensors: Microelectrochemical Devices, CRC Press, Leuven, Belgium, 1992, p. 1.

    Google Scholar 

  28. J. Dufour, An Introduction to Metallurgy, 5th ed., Cameron, 2006, p. 23.

    Google Scholar 

  29. O. Lebedeva, I. Kudryavtsev, D. Kultin, G. Dzhungurova, K. Kalmykov, and L. Kustov, Self-organized hexagonal nanostructures on nickel and steel formed by anodization in 1-Butyl-3-methylimidazolium bis (triflate) imide ionic liquid, J. Phys. Chem., 118(2014), No. 36, p. 21293.

    Google Scholar 

  30. A.P. Abbott, G. Frisch, K.S. Ryder, Electroplating using ionic liquids, Ann. Rev. Mater. Res, 43(2013), No. 1, p. 335.

    Article  Google Scholar 

  31. R.X. Wu, Y.M. Dong, P.P. Jiang, G.L. Wang, Y.M. Chen, and X.M. Wu, Electrodeposited synthesis of self-supported Ni-P cathode for efficient electrocatalytic hydrogen generation, Prog. Nat. Sci., 26(2016), No. 3, p. 303.

    Article  Google Scholar 

  32. K. Haerens, E. Matthijs, A. Chmielarz, and B. Van der Bruggen, The use of ionic liquids based on choline chloride for metal deposition: a green alternative?, J. Environ. Manage., 90(2009), 11, p. 3245.

    Article  Google Scholar 

  33. K. Haerens, E. Matthijs, K. Binnemans, and B. Van der Bruggen, Electrochemical decomposition of choline chloride based ionic liquid analogues, Green Chem., 11(2009), No. 9, p. 1357.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek M. Abdel-Fattah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loftis, J.D., Abdel-Fattah, T.M. Nanoscale electropolishing of high-purity nickel with an ionic liquid. Int J Miner Metall Mater 26, 649–656 (2019). https://doi.org/10.1007/s12613-019-1773-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1773-1

Keywords

Navigation