Skip to main content

Advertisement

Log in

Constant current electrodeposition preparation of nickel layer and its mechanical properties in ionic liquid

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Smooth and compact nickel layers were successfully prepared in the ionic liquid of 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) by constant current electrodeposition method. The effects of temperature, additive content, current density, and deposition time on the performance of the nickel layers were systematically analyzed. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to analyze the surface morphology and composition of the nickel layers. Meanwhile, the tensile strengths of the nickel layers were tested by universal tensile testing machine. The results show that different process conditions have a great effect on morphology and performance of the electrodeposited nickel layer. The optimization of process parameters is as follows: BMIMBF4 to ethylene glycol (EG) volume ratio of 2:1, deposition temperature of 120 °C, and current density of 1.2 mA·cm−2. Current density has a greater influence on the tensile strength of the nickel layer, and the maximum value of tensile strength is 1275 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu Y, Zhai YC, Wang H. Research on production process of Nickel. Mater Rev. 2006;20(3):79.

    CAS  Google Scholar 

  2. Wang RY, Long JM, Pei HZ. Research progress on electroforming nickel and nickel alloys. Electroplat Finish. 2009;28(3):10.

    Google Scholar 

  3. Dibari GA. Nickel plating. Met Finish. 1995;93(1):259.

    Article  Google Scholar 

  4. Watt GW, Hazlehurst DA. Mechanism of electrodeposition of nickel from liquid ammonia solutions of spin-free nickel(II) complexes. J Electrochem Soc. 1959;106(2):117.

    Article  CAS  Google Scholar 

  5. Ebrahimi F, Bourne GR, Kelly MS, Matthews TE. Mechanical properties of nano-crystalline nickel produced by electrodeposition. Nanostruct Mater. 1999;11(3):343.

    Article  CAS  Google Scholar 

  6. Matsui I, Takigawa Y, Uesugi T, Higashi K. Enhanced tensile ductility in bulk nanocrystalline nickel electrodeposited by sulfamate bath. Mater Lett. 2011;65(15):2351.

    Article  CAS  Google Scholar 

  7. Ohno H. Electrochemical Aspects of Ionic Liquids. Hoboken: Wiley; 2005. 110.

    Book  Google Scholar 

  8. Simka W, Puszczyk D, Nawrat G. Electrodeposition of metals from non-aqueous solutions. Electrochim Acta. 2009;54(23):5307.

    Article  CAS  Google Scholar 

  9. Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Grätzel M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem. 1996;35(5):1168.

    Article  CAS  Google Scholar 

  10. Abedin SZE, Endres F. Ionic liquids: the link to high-temperature molten salts. Acc Chem Res. 2007;40(11):1106.

    Article  Google Scholar 

  11. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater. 2009;8(8):621.

    Article  CAS  Google Scholar 

  12. Yang PX, An MZ, Li HX, Li JD, Wang FP. Study on electrodeposition of pure nickel. In: Proceedings of the National Electronic Electroplating Academic Annual Conference. Hangzhou; 2007, 208.

  13. Freyland W, Zell CA, Zein El Abedin S, Endres F. Nanoscale electrodeposition of metals and semiconductors from ionic liquids. Electrochim Acta. 2003;48(20):3053.

    Article  CAS  Google Scholar 

  14. Deng MJ, Sun I, Chen PY, Chang JK, Tsai WT. Electrodeposition behavior of nickel in the water-and air-stable 1-ethyl-3-methylimidazolium dicyanamide room-temperature ionic liquid. Electrochim Acta. 2008;53(19):5812.

    Article  CAS  Google Scholar 

  15. Mann O, Freyland W. Electrocrystallization of distinct Ni nanostructures at the ionic liquid/Au(111) interface: an electrochemical and in situ STM investigation. J Phys Chem C. 2007;111(27):9832.

    Article  CAS  Google Scholar 

  16. Mann O, Pan GB, Freyland W. Nanoscale electrodeposition of metals and compound semiconductors from ionic liquids. Electrochim Acta. 2009;54(9):2487.

    Article  CAS  Google Scholar 

  17. Zhu YL, Katayama Y, Miura T. Effects of acetonitrile on electrodeposition of Ni from a hydrophobic ionic liquid. Electrochim Acta. 2010;55(28):9019.

    Article  CAS  Google Scholar 

  18. Gu C, Tu J. One-step fabrication of nanostructured Ni film with lotus effect from deep eutectic solvent. Langmuir. 2011;27(16):10132.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Aerospace Science Foundation of China (No. 2012ZE51058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Gang Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, JG., Li, TJ., Li, X. et al. Constant current electrodeposition preparation of nickel layer and its mechanical properties in ionic liquid. Rare Met. 42, 1752–1759 (2023). https://doi.org/10.1007/s12598-016-0855-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0855-8

Keywords

Navigation